"Supersymmetric quantum mechanics"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
 
==introduction==
 
==introduction==
 
Consider a quantum mechanical system  consisting of a Hilbert (Fock)
 
Consider a quantum mechanical system  consisting of a Hilbert (Fock)
space $\it F$ and Hamiltonian $H$. The system is said to be
+
space <math>\it F</math> and Hamiltonian <math>H</math>. The system is said to be
 
supersymmetric quantum mechanical (SQM) if
 
supersymmetric quantum mechanical (SQM) if
  
1.$\it F$ has a decomposition ${\it F}={\it F}^B \oplus {\it F}^F$
+
1.<math>\it F</math> has a decomposition <math>{\it F}={\it F}^B \oplus {\it F}^F</math>
and states in ${\it F}^B$ and ${\it F}^F$ are called bosonic and
+
and states in <math>{\it F}^B</math> and <math>{\it F}^F</math> are called bosonic and
fermionic states respectively. There is an operator $(-1)^F$ such
+
fermionic states respectively. There is an operator <math>(-1)^F</math> such
 
that
 
that
 
\begin{eqnarray}
 
\begin{eqnarray}
12번째 줄: 12번째 줄:
 
     &&(-1)^F \Psi =-\Psi \ \  if \ \Psi \in {\it F}^F
 
     &&(-1)^F \Psi =-\Psi \ \  if \ \Psi \in {\it F}^F
 
\end{eqnarray}
 
\end{eqnarray}
$F$ and $(-1)^F$ are called fermion number operator and chirality operator.
+
<math>F</math> and <math>(-1)^F</math> are called fermion number operator and chirality operator.
  
2.There are N operators $Q^I$, $I=1,\cdots,N$, such that
+
2.There are N operators <math>Q^I</math>, <math>I=1,\cdots,N</math>, such that
 
\begin{eqnarray}
 
\begin{eqnarray}
 
     Q^I,{Q^I}^\dagger &:&{\it F}^B \rightarrow {\it F}^F ,\\
 
     Q^I,{Q^I}^\dagger &:&{\it F}^B \rightarrow {\it F}^F ,\\
20번째 줄: 20번째 줄:
 
     \left\{ (-1)^F,Q^I\right\}&=&\left\{ (-1)^F,{Q^I}^\dagger\right\}=0
 
     \left\{ (-1)^F,Q^I\right\}&=&\left\{ (-1)^F,{Q^I}^\dagger\right\}=0
 
\end{eqnarray}
 
\end{eqnarray}
$Q^I$ are called supersymmetry (SUSY) charges or generators.
+
<math>Q^I</math> are called supersymmetry (SUSY) charges or generators.
  
 
3.The SUSY generators satisfy the general superalgebra condition:
 
3.The SUSY generators satisfy the general superalgebra condition:
27번째 줄: 27번째 줄:
 
       \left\{ Q^I,{Q^J}\right\}&=&\left\{ Q^I,{Q^J}\right\}=0
 
       \left\{ Q^I,{Q^J}\right\}&=&\left\{ Q^I,{Q^J}\right\}=0
 
\end{eqnarray}
 
\end{eqnarray}
where $I,J=1,\cdots,N$.
+
where <math>I,J=1,\cdots,N</math>.
  
 
A quantum system satisfying the above
 
A quantum system satisfying the above

2020년 11월 16일 (월) 10:04 판

introduction

Consider a quantum mechanical system consisting of a Hilbert (Fock) space \(\it F\) and Hamiltonian \(H\). The system is said to be supersymmetric quantum mechanical (SQM) if

1.\(\it F\) has a decomposition \({\it F}={\it F}^B \oplus {\it F}^F\) and states in \({\it F}^B\) and \({\it F}^F\) are called bosonic and fermionic states respectively. There is an operator \((-1)^F\) such that \begin{eqnarray} &&(-1)^F \Psi =\Psi \ \ if \ \Psi \in {\it F}^B \\ &&(-1)^F \Psi =-\Psi \ \ if \ \Psi \in {\it F}^F \end{eqnarray} \(F\) and \((-1)^F\) are called fermion number operator and chirality operator.

2.There are N operators \(Q^I\), \(I=1,\cdots,N\), such that \begin{eqnarray} Q^I,{Q^I}^\dagger &:&{\it F}^B \rightarrow {\it F}^F ,\\ Q^I,{Q^I}^\dagger &:&{\it F}^F \rightarrow {\it F}^B ,\\ \left\{ (-1)^F,Q^I\right\}&=&\left\{ (-1)^F,{Q^I}^\dagger\right\}=0 \end{eqnarray} \(Q^I\) are called supersymmetry (SUSY) charges or generators.

3.The SUSY generators satisfy the general superalgebra condition: \begin{eqnarray} \left\{ Q^I,{Q^J}^\dagger \right\}&=&2 \delta^{IJ} H\\ \left\{ Q^I,{Q^J}\right\}&=&\left\{ Q^I,{Q^J}\right\}=0 \end{eqnarray} where \(I,J=1,\cdots,N\).

A quantum system satisfying the above conditions is said to have a type N supersymmetry.


expositions

  • Muhammad Abdul Wasay, Supersymmetric quantum mechanics and topology, http://arxiv.org/abs/1603.07691v1
  • van Loon, Mark. “Path Integral Methods in Index Theorems.” arXiv:1509.03063 [math-Ph, Physics:quant-Ph], September 10, 2015. http://arxiv.org/abs/1509.03063.
  • Li, Si. “Supersymmetric Quantum Mechanics and Lefschetz Fixed-Point Formula.” arXiv:hep-th/0511101, November 8, 2005. http://arxiv.org/abs/hep-th/0511101.
  • Cooper, Fred, Avinash Khare, and Uday Sukhatme. “Supersymmetry and Quantum Mechanics.” Physics Reports 251, no. 5–6 (January 1995): 267–385. doi:10.1016/0370-1573(94)00080-M.

articles

  • Dana Fine, Stephen Sawin, Path integrals, SUSY QM and the Atiyah-Singer index theorem for twisted Dirac, arXiv:1605.06982 [math-ph], May 23 2016, http://arxiv.org/abs/1605.06982