"Non-unitary c(2,2k+1) minimal models"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
9번째 줄: 9번째 줄:
 
==central charge and conformal dimensions==
 
==central charge and conformal dimensions==
  
*  central charge<br><math>c(2,2k+1)=1-\frac{3(2k-1)^2}{2k+1}</math><br>
+
*  central charge<math>c(2,2k+1)=1-\frac{3(2k-1)^2}{2k+1}</math>
*  primary fields have conformal dimensions<br><math>h_j=-\frac{j(2k-1-j)}{2(2k+1)}</math>, <math>j\in \{0,1,\cdots,k-1\}</math> or by setting i=j+1<br><math>h_i=-\frac{(i-1)(2k-i)}{2(2k+1)}</math> <math>i\in \{1,2, \cdots,k\}</math> (this is An's notation in his paper)<br>
+
*  primary fields have conformal dimensions<math>h_j=-\frac{j(2k-1-j)}{2(2k+1)}</math>, <math>j\in \{0,1,\cdots,k-1\}</math> or by setting i=j+1<math>h_i=-\frac{(i-1)(2k-i)}{2(2k+1)}</math> <math>i\in \{1,2, \cdots,k\}</math> (this is An's notation in his paper)
*  effective central charge<br><math>c_{eff}=c-24h_{min}</math><br><math>c_{eff}=\frac{2k-2}{2k+1}</math><br>
+
*  effective central charge<math>c_{eff}=c-24h_{min}</math><math>c_{eff}=\frac{2k-2}{2k+1}</math>
  
 
 
 
 
20번째 줄: 20번째 줄:
  
 
* [[Andrews-Gordon identity]]
 
* [[Andrews-Gordon identity]]
*  character functions<br><math>\chi_i(\tau)=q^{h_i-c/24}\prod_{n\neq 0,\pm i\pmod {2k+1}}(1-q^n)^{-1}</math><br>
+
*  character functions<math>\chi_i(\tau)=q^{h_i-c/24}\prod_{n\neq 0,\pm i\pmod {2k+1}}(1-q^n)^{-1}</math>
*  to understand the factor <math>q^{h-c/24}</math>, look at the [[finite size effect]] page also<br>
+
*  to understand the factor <math>q^{h-c/24}</math>, look at the [[finite size effect]] page also
* [[bosonic characters of Virasoro minimal models(Rocha-Caridi formula)]]<br><math>\chi_{r,s}^{(p,p')}=\frac{q^{\Delta_{r,s}^{(p,p')}}}{(q)_{\infty}}\sum_{n=-\infty}^{\infty}(q^{pp'n^2+(rp'-sp)n}-q^{(pn+r)(p'n+s)})</math><br><math>\Delta_{r,s}^{(p,p')}=h_{r,s}^{(p,p')}-\frac{c}{24}</math><br>
+
* [[bosonic characters of Virasoro minimal models(Rocha-Caridi formula)]]<math>\chi_{r,s}^{(p,p')}=\frac{q^{\Delta_{r,s}^{(p,p')}}}{(q)_{\infty}}\sum_{n=-\infty}^{\infty}(q^{pp'n^2+(rp'-sp)n}-q^{(pn+r)(p'n+s)})</math><math>\Delta_{r,s}^{(p,p')}=h_{r,s}^{(p,p')}-\frac{c}{24}</math>
  
 
Let's specify p=2, p'=2k+1, r=1, s=i
 
Let's specify p=2, p'=2k+1, r=1, s=i
54번째 줄: 54번째 줄:
 
:<math>\sum_{i=1}^{k-1}L(\frac{\sin^2\frac{\pi}{k+2}}{\sin^2\frac{(i+1)\pi}{k+2}})=\frac{2(k-1)}{k+2}\cdot \frac{\pi^2}{6}</math>
 
:<math>\sum_{i=1}^{k-1}L(\frac{\sin^2\frac{\pi}{k+2}}{\sin^2\frac{(i+1)\pi}{k+2}})=\frac{2(k-1)}{k+2}\cdot \frac{\pi^2}{6}</math>
 
*  non-unitary <math>c(2,2k+1)</math> [[minimal models]]
 
*  non-unitary <math>c(2,2k+1)</math> [[minimal models]]
$$
+
:<math>
 
\sum_{i=1}^{2k-2}L\left(\frac{\sin^2\frac{\pi}{2k+1}}{\sin^2\frac{(i+1)\pi}{2k+1}}\right)=\frac{2(2k-2)}{2k+1}\cdot \frac{\pi^2}{6}
 
\sum_{i=1}^{2k-2}L\left(\frac{\sin^2\frac{\pi}{2k+1}}{\sin^2\frac{(i+1)\pi}{2k+1}}\right)=\frac{2(2k-2)}{2k+1}\cdot \frac{\pi^2}{6}
$$
+
</math>
$$
+
:<math>
 
\sum_{i=1}^{k-1}L\left(\frac{\sin^2\frac{\pi}{2k+1}}{\sin^2\frac{(i+1)\pi}{2k+1}}\right)=\frac{2k-2}{2k+1}\cdot \frac{\pi^2}{6}
 
\sum_{i=1}^{k-1}L\left(\frac{\sin^2\frac{\pi}{2k+1}}{\sin^2\frac{(i+1)\pi}{2k+1}}\right)=\frac{2k-2}{2k+1}\cdot \frac{\pi^2}{6}
$$
+
</math>
  
 
 
 
 
65번째 줄: 65번째 줄:
 
==different expressions for central charge==
 
==different expressions for central charge==
  
*  from above<br><math>h_i-c(2,2k+1)/24</math><br><math>c(2,2k+1)=1-\frac{3(2k-1)^2}{2k+1}</math><br><math>h_i=-\frac{(i-1)(2k-i)}{2(2k+1)}</math>, <math>i\in \{1,2, \cdots,k\}</math><br>
+
*  from above<math>h_i-c(2,2k+1)/24</math><math>c(2,2k+1)=1-\frac{3(2k-1)^2}{2k+1}</math><math>h_i=-\frac{(i-1)(2k-i)}{2(2k+1)}</math>, <math>i\in \{1,2, \cdots,k\}</math>
*  L-values<br><math>\frac{k}{12}+\frac{2k+1}{12}-\frac{j(N-j)}{2N}</math><br>
+
*  L-values<math>\frac{k}{12}+\frac{2k+1}{12}-\frac{j(N-j)}{2N}</math>
  
 
 
 
 
120번째 줄: 120번째 줄:
 
 
 
 
  
# k := 5<br> f[k_, j_] := (2 k)/<br>    24 + ((2 k + 1)/12 - (j (2 k + 1 - j))/(2 (2 k + 1)))<br> Table[{j, f[k, j]}, {j, 1, 2 k}] // TableForm<br> Table[{j, -24*f[k, j]}, {j, 1, 2 k}] // TableForm<br> d[k_, j_] := (2 (k - j) + 1)^2/(8 (2 k + 1)) - 1/24<br> Table[{j, d[k, j]}, {j, 1, 2 k}] // TableForm<br> Table[{j, -24*d[k, j]}, {j, 1, 2 k}] // TableForm<br> cef[k_, j_] := -((j (2 k - 1 - j))/(2 (2 k +<br>          1))) - (1 - (3 (2 k - 1)^2)/(2 k + 1))/24<br> Table[{j, cef[k, j]}, {j, 0, 2 k - 1}] // TableForm<br> Table[{j, -24*cef[k, j]}, {j, 0, 2 k - 1}] // TableForm
+
# k := 5 f[k_, j_] := (2 k)/    24 + ((2 k + 1)/12 - (j (2 k + 1 - j))/(2 (2 k + 1))) Table[{j, f[k, j]}, {j, 1, 2 k}] // TableForm Table[{j, -24*f[k, j]}, {j, 1, 2 k}] // TableForm d[k_, j_] := (2 (k - j) + 1)^2/(8 (2 k + 1)) - 1/24 Table[{j, d[k, j]}, {j, 1, 2 k}] // TableForm Table[{j, -24*d[k, j]}, {j, 1, 2 k}] // TableForm cef[k_, j_] := -((j (2 k - 1 - j))/(2 (2 k +          1))) - (1 - (3 (2 k - 1)^2)/(2 k + 1))/24 Table[{j, cef[k, j]}, {j, 0, 2 k - 1}] // TableForm Table[{j, -24*cef[k, j]}, {j, 0, 2 k - 1}] // TableForm
  
 
 
 
 
126번째 줄: 126번째 줄:
 
 
 
 
  
# w := Exp[2 Pi*I*1/k]<br> L[j_] := -(2 k + 1)/2*<br>   Sum[DirichletCharacter[2 k + 1, j, a]*<br>     BernoulliB[2, a/(2 k + 1)], {a, 1, 2 k}]<br> c[k_, i_] := 1/(2 k) Sum[w^(i*s)*L[Mod[3*s, 2 k]], {s, 1, k}]<br> Table[DiscretePlot[{Re[DirichletCharacter[2 k + 1, j, a]],<br>    Im[DirichletCharacter[2 k + 1, j, a]]}, {a, 0, 2 k + 1},<br>   PlotLabel -> j], {j, 1, EulerPhi[2 k + 1]}]<br> Table[c[i], {i, 1, 2 k}]
+
# w := Exp[2 Pi*I*1/k] L[j_] := -(2 k + 1)/2*   Sum[DirichletCharacter[2 k + 1, j, a]*     BernoulliB[2, a/(2 k + 1)], {a, 1, 2 k}] c[k_, i_] := 1/(2 k) Sum[w^(i*s)*L[Mod[3*s, 2 k]], {s, 1, k}] Table[DiscretePlot[{Re[DirichletCharacter[2 k + 1, j, a]],    Im[DirichletCharacter[2 k + 1, j, a]]}, {a, 0, 2 k + 1},   PlotLabel -> j], {j, 1, EulerPhi[2 k + 1]}] Table[c[i], {i, 1, 2 k}]
 
[[분류:conformal field theory]]
 
[[분류:conformal field theory]]
[[분류:math and physics]]
 
 
[[분류:math and physics]]
 
[[분류:math and physics]]
 
[[분류:minimal models]]
 
[[분류:minimal models]]
 
[[분류:migrate]]
 
[[분류:migrate]]

2020년 11월 16일 (월) 11:06 판

introduction

 

 

 

central charge and conformal dimensions

  • central charge\(c(2,2k+1)=1-\frac{3(2k-1)^2}{2k+1}\)
  • primary fields have conformal dimensions\(h_j=-\frac{j(2k-1-j)}{2(2k+1)}\), \(j\in \{0,1,\cdots,k-1\}\) or by setting i=j+1\(h_i=-\frac{(i-1)(2k-i)}{2(2k+1)}\) \(i\in \{1,2, \cdots,k\}\) (this is An's notation in his paper)
  • effective central charge\(c_{eff}=c-24h_{min}\)\(c_{eff}=\frac{2k-2}{2k+1}\)

 

 

character formula and Andrew-Gordon identity

Let's specify p=2, p'=2k+1, r=1, s=i

\(\sum_{n=-\infty}^{\infty}(q^{2(2k+1)n^2+(2k+1-2i)n}-q^{(2n+1)((2k+1)n+i)})=\sum_{n=-\infty}^{\infty}(q^{2(2k+1)n^2+(2k+1-2i)n}-\sum_{n=-\infty}^{\infty}q^{(2n+1)((2k+1)n+i)})\)

\(=\sum_{n=-\infty}^{\infty}(q^{2(2k+1)n^2+(2k+1-2i)n}-\sum_{n=-\infty}^{\infty}q^{(2(-n)+1)(-(2k+1)(-n)+i)})\)

\(=\sum_{n=-\infty}^{\infty}(q^{2n\left[(2k+1)(2n)+(2k+1-2i)\right]/2}-\sum_{n=-\infty}^{\infty}q^{(2n-1)\left[(2k+1)(2n-1)+2k-2i+1\right]/2}\)

\(=\sum_{n=-\infty}^{\infty}(-1)^{n}q^{\frac{(2k+1)n^2}{2}}q^{\frac{n(2k-2i+1)}{2}}\)

\(=\sum_{n=-\infty}^{\infty}(-1)^n(q^{\frac{(2k-2i+1)}{2}})^{n}(q^{\frac{(2k+1)}{2}})^{n^2}=\prod_{m=1}^{\infty}(1-q^{(2k+1)m})(1-q^{\frac{2k-2i+1}{2}}q^{\frac{2k+1}{2}(2m-1)})(1-q^{-\frac{2k-2i+1}{2}}q^{\frac{2k+1}{2}(2m-1)})\)

\(=\prod_{m=1}^{\infty}(1-q^{(2k+1)m})(1-q^{(2k+1)m-i})(1-q^{(2k+1)m-(2k-i+1)})\)

Thus,

\(\chi_{r,s}^{(p,p')}=q^{\Delta_{r,s}^{(p,p')}}\prod_{n\neq 0,\pm i\pmod {2k+1}}(1-q^n)^{-1}\)

Using a result from 베일리 격자(Bailey lattice)

\(\sum_{n_1\geq\cdots\geq n_{k-1}\geq0}\frac{q^{n_1^2+\cdots+n_{k-1}^2+n_i+\cdots+n_{k-1}}}{(q)_{n_{1}-n_{2}}\cdots (q)_{n_{k-2}-n_{k-1}}(q)_{n_{k-1}}}=\sum_{n=-\infty}^{\infty}(-1)^{n}q^{\frac{(2k+1)n^2}{2}}q^{\frac{n(2k-2i+1)}{2}}=\prod_{n\neq 0,\pm i\pmod {2k+1}}(1-q^n)^{-1}\)

 

 

asymptotic analysis of Andrews-Gordon identity

\[\sum_{i=1}^{k-1}L(\frac{\sin^2\frac{\pi}{k+2}}{\sin^2\frac{(i+1)\pi}{k+2}})=\frac{2(k-1)}{k+2}\cdot \frac{\pi^2}{6}\]

\[ \sum_{i=1}^{2k-2}L\left(\frac{\sin^2\frac{\pi}{2k+1}}{\sin^2\frac{(i+1)\pi}{2k+1}}\right)=\frac{2(2k-2)}{2k+1}\cdot \frac{\pi^2}{6} \] \[ \sum_{i=1}^{k-1}L\left(\frac{\sin^2\frac{\pi}{2k+1}}{\sin^2\frac{(i+1)\pi}{2k+1}}\right)=\frac{2k-2}{2k+1}\cdot \frac{\pi^2}{6} \]

 

different expressions for central charge

  • from above\(h_i-c(2,2k+1)/24\)\(c(2,2k+1)=1-\frac{3(2k-1)^2}{2k+1}\)\(h_i=-\frac{(i-1)(2k-i)}{2(2k+1)}\), \(i\in \{1,2, \cdots,k\}\)
  • L-values\(\frac{k}{12}+\frac{2k+1}{12}-\frac{j(N-j)}{2N}\)

 

 

Dirichlet L-function

\(L(-1, \chi) = \frac{1}{2f}\sum_{n=1}^{\infty}{\chi(n)}{n}\)

\(n\geq 1\) 이라 하자. 일반적으로 \(\chi\neq 1\)인 primitive 준동형사상 \(\chi \colon(\mathbb{Z}/f\mathbb{Z})^\times \to \mathbb C^{*}\)에 대하여 \(L(1-n,\chi)\)의 값은 다음과 같이 주어진다 \[L(1-n,\chi)=-\frac{f^{n-1}}{n}\sum_{(a,f)=1}\chi(a)B_n(\frac{a}{f})\] \[L(-1,\chi)=L(1-2,\chi)=-\frac{f}{2}\sum_{(a,f)=1}\chi(a)B_2(\frac{a}{f})\]

여기서 \(B_n(x)\) 는 베르누이 다항식(\(B_0(x)=1\), \(B_1(x)=x-1/2\), \(B_2(x)=x^2-x+1/6\), \(\cdots\))

 

Let N=2k+1

\(\omega=\exp \frac{2\pi i}{2k+1}\)

G: group of Dirichlet characters of conductor N which maps -1 to 1

G has order k and cyclic generated by \(\chi\)

\(c_i=\frac{1}{2k}\sum_{s=1}^{k}\omega^{is}L(-1,\chi^s)\)

Then, 

\(c_i=-\frac{2k+1}{12}+\frac{j(N-j)}{2N}\)

where j satisfies \(\chi(j)=\omega^{k-i}\)

Vacuum energy is given by

\(d_i=\frac{1}{2}L(-1,\chi^{k})-c_i\)

 

Since

\(L(-1,\chi^{k})=\frac{N-1}{12}=\frac{k}{6}\),  the vacuum energy 

\(d_i=\frac{1}{2}L(-1,\chi^{k})-c_i=\frac{k}{12}+\frac{2k+1}{12}-\frac{j(N-j)}{2N}=\frac{j(2k+1-j)}{2(2k+1)}-\frac{k+1}{12}\).

These are equal to \({h_i-c/24}\)

 

 

  1. k := 5 f[k_, j_] := (2 k)/    24 + ((2 k + 1)/12 - (j (2 k + 1 - j))/(2 (2 k + 1))) Table[{j, f[k, j]}, {j, 1, 2 k}] // TableForm Table[{j, -24*f[k, j]}, {j, 1, 2 k}] // TableForm d[k_, j_] := (2 (k - j) + 1)^2/(8 (2 k + 1)) - 1/24 Table[{j, d[k, j]}, {j, 1, 2 k}] // TableForm Table[{j, -24*d[k, j]}, {j, 1, 2 k}] // TableForm cef[k_, j_] := -((j (2 k - 1 - j))/(2 (2 k +          1))) - (1 - (3 (2 k - 1)^2)/(2 k + 1))/24 Table[{j, cef[k, j]}, {j, 0, 2 k - 1}] // TableForm Table[{j, -24*cef[k, j]}, {j, 0, 2 k - 1}] // TableForm

 

 

  1. w := Exp[2 Pi*I*1/k] L[j_] := -(2 k + 1)/2*   Sum[DirichletCharacter[2 k + 1, j, a]*     BernoulliB[2, a/(2 k + 1)], {a, 1, 2 k}] c[k_, i_] := 1/(2 k) Sum[w^(i*s)*L[Mod[3*s, 2 k]], {s, 1, k}] Table[DiscretePlot[{Re[DirichletCharacter[2 k + 1, j, a]],    Im[DirichletCharacter[2 k + 1, j, a]]}, {a, 0, 2 k + 1},   PlotLabel -> j], {j, 1, EulerPhi[2 k + 1]}] Table[c[i], {i, 1, 2 k}]