"Real forms of a Lie algebra"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
(→‎메타데이터: 새 문단)
11번째 줄: 11번째 줄:
 
* a real Lie algebra which is the Lie algebra of some compact group is called compact
 
* a real Lie algebra which is the Lie algebra of some compact group is called compact
 
[[분류:migrate]]
 
[[분류:migrate]]
 +
 +
== 메타데이터 ==
 +
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q7301156 Q7301156]

2020년 12월 27일 (일) 03:16 판

introduction

  • a complex Lie algbera L can be regarded as a real Lie algebra \(L^{R}\)
  • if \(L^{R}=L_0\oplus i L_0\) for some real subalgebra \(L_0\)
  • \(L_0\) is called a real from of \(L\)
  • split real forms
  • compact real forms


compact real forms

  • of all the real forms of a given simple complex Lie algebra, there is precisely one which is the real Lie algebra of a compact Lie group
  • a real Lie algebra which is the Lie algebra of some compact group is called compact

메타데이터

위키데이터