"Q-states Potts model and Ashkin-Teller model"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) |
||
3번째 줄: | 3번째 줄: | ||
* Potts model is the spin model for which the Boltzmann weights depend only on whether the two atoms are in the same state or not. | * Potts model is the spin model for which the Boltzmann weights depend only on whether the two atoms are in the same state or not. | ||
* 2-states Potts model = [[Ising models|Ising model]] M(3,4) minimal model | * 2-states Potts model = [[Ising models|Ising model]] M(3,4) minimal model | ||
− | * [[3-states Potts model]] = | + | * [[3-states Potts model]] = M(5,6) [[minimal models|minimal model]] |
− | * recent developments | + | * recent developments of superintegrable chiral Potts model |
* types | * types | ||
** self-dual potts model | ** self-dual potts model | ||
** chiral potts model | ** chiral potts model | ||
− | + | ||
− | + | ||
− | ==two | + | ==two dimensional water== |
* modeling freezing water | * modeling freezing water | ||
− | + | ||
− | + | ||
==related items== | ==related items== | ||
26번째 줄: | 26번째 줄: | ||
* [[Temperley-Lieb algebra]] | * [[Temperley-Lieb algebra]] | ||
− | + | ||
− | + | ||
==encyclopedia== | ==encyclopedia== | ||
* http://en.wikipedia.org/wiki/Potts_model | * http://en.wikipedia.org/wiki/Potts_model | ||
− | + | ||
− | + | ||
==books== | ==books== | ||
42번째 줄: | 42번째 줄: | ||
** P. Martin | ** P. Martin | ||
− | + | ||
==expositions== | ==expositions== | ||
57번째 줄: | 57번째 줄: | ||
* Qin, M. P., Q. N. Chen, Z. Y. Xie, J. Chen, J. F. Yu, H. H. Zhao, B. Normand, and T. Xiang. ‘Partial Long-Range Order in Antiferromagnetic Potts Models’. Physical Review B 90, no. 14 (21 October 2014). doi:10.1103/PhysRevB.90.144424. | * Qin, M. P., Q. N. Chen, Z. Y. Xie, J. Chen, J. F. Yu, H. H. Zhao, B. Normand, and T. Xiang. ‘Partial Long-Range Order in Antiferromagnetic Potts Models’. Physical Review B 90, no. 14 (21 October 2014). doi:10.1103/PhysRevB.90.144424. | ||
* [http://prola.aps.org/abstract/RMP/v54/i1/p235_1 The Potts model] | * [http://prola.aps.org/abstract/RMP/v54/i1/p235_1 The Potts model] | ||
− | ** Fa-Yueh Wu, | + | ** Fa-Yueh Wu, Rev. Mod. Phys. 54, 235 - 268 (1982) |
* [http://dx.doi.org/10.1088/0305-4470/14/2/005 Critical exponents of two-dimensional Potts and bond percolation models] | * [http://dx.doi.org/10.1088/0305-4470/14/2/005 Critical exponents of two-dimensional Potts and bond percolation models] | ||
** H W J Blote , M P Nightingale and B Derrida, 1981 | ** H W J Blote , M P Nightingale and B Derrida, 1981 |
2020년 12월 28일 (월) 04:14 판
introduction
- The Potts model plays an essential role in classical statistical mechanics, illustrating many fundamental phenomena. One example is the existence of partially long-range-ordered states, in which some degrees of freedom remain disordered
- Potts model is the spin model for which the Boltzmann weights depend only on whether the two atoms are in the same state or not.
- 2-states Potts model = Ising model M(3,4) minimal model
- 3-states Potts model = M(5,6) minimal model
- recent developments of superintegrable chiral Potts model
- types
- self-dual potts model
- chiral potts model
two dimensional water
- modeling freezing water
encyclopedia
books
expositions
- Au-Yang, Helen, and Jacques H. H. Perk. “About 30 Years of Integrable Chiral Potts Model, Quantum Groups at Roots of Unity and Cyclic Hypergeometric Functions.” arXiv:1601.01014 [math-Ph], January 5, 2016. http://arxiv.org/abs/1601.01014.
- Perk, Jacques H. H. “The Early History of the Integrable Chiral Potts Model and the Odd-Even Problem.” arXiv:1511.08526 [math-Ph], November 26, 2015. http://arxiv.org/abs/1511.08526.
articles
- Au-Yang, Helen, and Jacques H. H. Perk. “CSOS Models Descending from Chiral Potts Models: Degeneracy of the Eigenspace and Loop Algebra.” arXiv:1511.08523 [cond-Mat, Physics:math-Ph], November 26, 2015. http://arxiv.org/abs/1511.08523.
- Jacobsen, Jesper Lykke. “Critical Points of Potts and O(\(N\)) Models from Eigenvalue Identities in Periodic Temperley-Lieb Algebras.” arXiv:1507.03027 [cond-Mat, Physics:math-Ph], July 10, 2015. http://arxiv.org/abs/1507.03027.
- Lencses, M., and G. Takacs. “Confinement in the Q-State Potts Model: An RG-TCSA Study.” arXiv:1506.06477 [cond-Mat, Physics:hep-Th], June 22, 2015. http://arxiv.org/abs/1506.06477.
- Molkaraie, Mehdi, and Vicenc Gomez. ‘Efficient Monte Carlo Methods for the Potts Model at Low Temperature’. arXiv:1506.07044 [physics, Stat], 23 June 2015. http://arxiv.org/abs/1506.07044.
- Ikhlef, Yacine, and Robert Weston. ‘Discrete Holomorphicity in the Chiral Potts Model’. arXiv:1502.04944 [cond-Mat, Physics:hep-Th, Physics:math-Ph], 17 February 2015. http://arxiv.org/abs/1502.04944.
- Dasu, Shival, and Matilde Marcolli. “Potts Models with Magnetic Field: Arithmetic, Geometry, and Computation.” arXiv:1412.7925 [math-Ph], December 26, 2014. http://arxiv.org/abs/1412.7925.
- Qin, M. P., Q. N. Chen, Z. Y. Xie, J. Chen, J. F. Yu, H. H. Zhao, B. Normand, and T. Xiang. ‘Partial Long-Range Order in Antiferromagnetic Potts Models’. Physical Review B 90, no. 14 (21 October 2014). doi:10.1103/PhysRevB.90.144424.
- The Potts model
- Fa-Yueh Wu, Rev. Mod. Phys. 54, 235 - 268 (1982)
- Critical exponents of two-dimensional Potts and bond percolation models
- H W J Blote , M P Nightingale and B Derrida, 1981
- Some Exact Results for the Ashkin-Teller Model
- Temperley, H. N. V.; Ashley, Susan E, 1979