"오일러 연분수"의 두 판 사이의 차이
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) (→메타데이터: 새 문단) |
||
43번째 줄: | 43번째 줄: | ||
* https://docs.google.com/file/d/0B8XXo8Tve1cxbnJzMFktT3hwVTg/edit | * https://docs.google.com/file/d/0B8XXo8Tve1cxbnJzMFktT3hwVTg/edit | ||
[[분류:연분수]] | [[분류:연분수]] | ||
+ | |||
+ | == 메타데이터 == | ||
+ | |||
+ | ===위키데이터=== | ||
+ | * ID : [https://www.wikidata.org/wiki/Q7604 Q7604] |
2020년 12월 28일 (월) 05:58 판
개요
- 다음과 같은 형태의 등식이 성립한다
\[ a_0+\frac{a_1}{1-\frac{a_2}{1+a_2-\frac{a_3}{1+a_3-\frac{a_4}{1+a_4}}}} = a_0+a_1+a_1 a_2+a_1 a_2 a_3+a_1 a_2 a_3 a_4 \]
- 일반화된 연분수의 기호를 사용하면 좌변은 다음과 같이 표현
\[ a_0 + \frac{a_1 \mid}{\mid 1} + \frac{-a_2 \mid}{\mid 1+a_2} + \frac{-a_3 \mid}{\mid 1+a_3}+\frac{-a_4 \mid}{\mid 1+a_4} \]
- 일반적으로 다음이 성립한다
\[ a_0 + \frac{a_1 \mid}{\mid 1} + \frac{-a_2 \mid}{\mid 1+a_2} + \cdots +\frac{-a_n \mid}{\mid 1+a_n}=a_0+a_1+a_1a_2+\cdots+a_1\cdots a_n \]
예
\[ \begin{array}{c|c|c} n & {} & {} \\ \hline 0 & a_0 & a_0 \\ \hline 1 & a_0+a_1 & a_0+a_1 \\ \hline 2 & a_0+\frac{a_1}{1-\frac{a_2}{1+a_2}} & a_0+a_1+a_1 a_2 \\ \hline 3 & a_0+\frac{a_1}{1-\frac{a_2}{1+a_2-\frac{a_3}{1+a_3}}} & a_0+a_1+a_1 a_2+a_1 a_2 a_3 \\ \hline 4 & a_0+\frac{a_1}{1-\frac{a_2}{1+a_2-\frac{a_3}{1+a_3-\frac{a_4}{1+a_4}}}} & a_0+a_1+a_1 a_2+a_1 a_2 a_3+a_1 a_2 a_3 a_4 \\ \hline 5 & a_0+\frac{a_1}{1-\frac{a_2}{1+a_2-\frac{a_3}{1+a_3-\frac{a_4}{1+a_4-\frac{a_5}{1+a_5}}}}} & a_0+a_1+a_1 a_2+a_1 a_2 a_3+a_1 a_2 a_3 a_4+a_1 a_2 a_3 a_4 a_5 \\ \hline 6 & a_0+\frac{a_1}{1-\frac{a_2}{1+a_2-\frac{a_3}{1+a_3-\frac{a_4}{1+a_4-\frac{a_5}{1+a_5-\frac{a_6}{1+a_6}}}}}} & a_0+a_1+a_1 a_2+a_1 a_2 a_3+a_1 a_2 a_3 a_4+a_1 a_2 a_3 a_4 a_5+a_1 a_2 a_3 a_4 a_5 a_6 \end{array} \]
사전 형태의 자료
매스매티카 파일 및 계산 리소스
메타데이터
위키데이터
- ID : Q7604