"Calogero-Moser system"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) (→노트: 새 문단) |
Pythagoras0 (토론 | 기여) (→메타데이터: 새 문단) |
||
10번째 줄: | 10번째 줄: | ||
===소스=== | ===소스=== | ||
<references /> | <references /> | ||
+ | |||
+ | == 메타데이터 == | ||
+ | |||
+ | ===Spacy 패턴 목록=== | ||
+ | * [{'LOWER': 'calogero'}, {'OP': '*'}, {'LOWER': 'moser'}, {'LEMMA': 'system'}] |
2020년 12월 28일 (월) 19:55 판
노트
말뭉치
- Calogero–Moser system with elliptic potentials are studied.[1]
- The goal of the present lecture notes is to give an introduction to the theory of Calogero–Moser systems, highlighting their interplay with these fields.[2]
- The proposed project lies in the areas of integrable systems, and more specifically Calogero-Moser systems, Cherednik algebras and the theory of Frobenius manifolds.[3]
- This will also give a unified approach to the integrability of generalised Calogero-Moser systems.[3]
- We also present two important classes of new examples, a family of hyperbolic spin Calogero-Moser systems and the spin Toda lattices.[4]
- If G is a real reflection group, these families reduce to the known generalizations of elliptic Calogero–Moser systems, but in the non-real case they appear to be new.[5]
소스
- ↑ Difference Calogero–Moser systems and finite Toda chains
- ↑ European Mathematical Society Publishing House
- ↑ 3.0 3.1 Calogero-Moser systems, Cherednik algebras and Frobenius structures
- ↑ A family of hyperbolic spin Calogero-Moser systems and the spin Toda lattices
- ↑ On elliptic Calogero–Moser systems for complex crystallographic reflection groups
메타데이터
Spacy 패턴 목록
- [{'LOWER': 'calogero'}, {'OP': '*'}, {'LOWER': 'moser'}, {'LEMMA': 'system'}]