"비선형 차원축소"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(→‎메타데이터: 새 문단)
 
11번째 줄: 11번째 줄:
 
  <references />
 
  <references />
  
== 메타데이터 ==
+
==메타데이터==
 
 
 
===위키데이터===
 
===위키데이터===
 
* ID :  [https://www.wikidata.org/wiki/Q7049464 Q7049464]
 
* ID :  [https://www.wikidata.org/wiki/Q7049464 Q7049464]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'nonlinear'}, {'LOWER': 'dimensionality'}, {'LEMMA': 'reduction'}]
 +
* [{'LEMMA': 'NLDR'}]
 +
* [{'LOWER': 'manifold'}, {'LEMMA': 'learning'}]

2021년 2월 17일 (수) 00:43 기준 최신판

노트

  • It should be apparent, therefore, that NLDR has several applications in the field of computer-vision.[1]
  • Manifold Learning can be thought of as an attempt to generalize linear frameworks like PCA to be sensitive to non-linear structure in data.[2]
  • Tools for NLDR can help researchers across all areas of science and engineering to better understand and visualize their data.[3]
  • (2020) Predict high-frequency trading marker via manifold learning.[4]
  • Framework of Multiple-point Statistical Simulation Using Manifold Learning for the Dimensionality Reduction of Patterns.[4]
  • Joint Sparsity Aided Joint Manifold Learning for Sensor Fusion.[4]
  • Local distances preserving based manifold learning.[4]

소스

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'nonlinear'}, {'LOWER': 'dimensionality'}, {'LEMMA': 'reduction'}]
  • [{'LEMMA': 'NLDR'}]
  • [{'LOWER': 'manifold'}, {'LEMMA': 'learning'}]