"Constrained system : U(1) pure gauge theory"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) (→메타데이터: 새 문단) |
Pythagoras0 (토론 | 기여) |
||
64번째 줄: | 64번째 줄: | ||
[[분류:migrate]] | [[분류:migrate]] | ||
− | == 메타데이터 == | + | ==메타데이터== |
− | |||
===위키데이터=== | ===위키데이터=== | ||
* ID : [https://www.wikidata.org/wiki/Q5619713 Q5619713] | * ID : [https://www.wikidata.org/wiki/Q5619713 Q5619713] | ||
+ | ===Spacy 패턴 목록=== | ||
+ | * [{'LOWER': 'gupta'}, {'OP': '*'}, {'LOWER': 'bleuler'}, {'LEMMA': 'formalism'}] |
2021년 2월 17일 (수) 01:41 기준 최신판
introduction
- U(1) pure gauge theory : theory of light (without matter)\(\mathcal{L}_{\text{free}} = - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}\)
- quantization of the photon field http://www.ecm.ub.es/~espriu/teaching/classes/fae/LECT4.pdf
- fix the gauge
- quantize unconstrained system
- gives physical and unphysical states (negative norm states)
- impose the constraint condition to remove negative norm states
- we get a Hilbert space of physical states
Gupta-Bleuler quantization of QED
- Gupta-Bleuler Method http://en.wikipedia.org/wiki/Gupta–Bleuler_formalism
remark
- if matter exists, we get QED\(\mathcal{L}_{\text{free}} = \bar{\psi} (i\gamma^\mu \partial_\mu -m)\psi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}\)
expositions
articles
- http://www.ams.org/mathscinet
- http://www.zentralblatt-math.org/zmath/en/
- http://arxiv.org/
- http://www.pdf-search.org/
- http://dx.doi.org/
메타데이터
위키데이터
- ID : Q5619713
Spacy 패턴 목록
- [{'LOWER': 'gupta'}, {'OP': '*'}, {'LOWER': 'bleuler'}, {'LEMMA': 'formalism'}]