"가우스-요르단 소거법"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(→‎메타데이터: 새 문단)
 
61번째 줄: 61번째 줄:
 
[[분류:선형대수학]]
 
[[분류:선형대수학]]
  
== 메타데이터 ==
+
==메타데이터==
 
 
 
===위키데이터===
 
===위키데이터===
 
* ID :  [https://www.wikidata.org/wiki/Q1195020 Q1195020]
 
* ID :  [https://www.wikidata.org/wiki/Q1195020 Q1195020]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'gauss'}, {'OP': '*'}, {'LOWER': 'jordan'}, {'LEMMA': 'elimination'}]

2021년 2월 17일 (수) 03:56 기준 최신판

개요

  • 선형대수학의 중요한 알고리즘의 하나
  • 선형연립방정식의 해법, 역행렬의 계산 등에 활용할 수 있다



\(\left( \begin{array}{ccc} 1 & -3 & 0 \\ -1 & 1 & 5 \\ 0 & 1 & 1 \end{array} \right)\) 에 가우스-조단 소거법을 적용한 경우


\(\begin{array}{l} \left( \begin{array}{ccc} 1 & -3 & 0 \\ -1 & 1 & 5 \\ 0 & 1 & 1 \end{array} \right) \\ \left( \begin{array}{ccc} 1 & -3 & 0 \\ 0 & -2 & 5 \\ 0 & 1 & 1 \end{array} \right) \\ \left( \begin{array}{ccc} 1 & -3 & 0 \\ 0 & 1 & -\frac{5}{2} \\ 0 & 1 & 1 \end{array} \right) \\ \left( \begin{array}{ccc} 1 & 0 & -\frac{15}{2} \\ 0 & 1 & -\frac{5}{2} \\ 0 & 1 & 1 \end{array} \right) \\ \left( \begin{array}{ccc} 1 & 0 & -\frac{15}{2} \\ 0 & 1 & -\frac{5}{2} \\ 0 & 0 & \frac{7}{2} \end{array} \right) \\ \left( \begin{array}{ccc} 1 & 0 & -\frac{15}{2} \\ 0 & 1 & -\frac{5}{2} \\ 0 & 0 & 1 \end{array} \right) \\ \left( \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & -\frac{5}{2} \\ 0 & 0 & 1 \end{array} \right) \\ \left( \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right) \end{array}\)



메모

관련된 항목들

매스매티카 파일 및 계산 리소스

노트

위키데이터

말뭉치

  1. Here you can solve systems of simultaneous linear equations using Gauss-Jordan Elimination Calculator with complex numbers online for free with a very detailed solution.[1]
  2. In fact Gauss-Jordan elimination algorithm is divided into forward elimination and back substitution.[1]
  3. But practically it is more convenient to eliminate all elements below and above at once when using Gauss-Jordan elimination calculator.[1]
  4. To understand Gauss-Jordan elimination algorithm better input any example, choose "very detailed solution" option and examine the solution.[1]
  5. Gauss-Jordan Elimination is an algorithm that can be used to solve systems of linear equations and to find the inverse of any invertible matrix.[2]
  6. It's called Gauss-Jordan elimination, to find the inverse of the matrix.[3]
  7. And we did this using Gauss-Jordan elimination.[3]
  8. To obtain an initial basic feasible solution, the Gauss-Jordan elimination procedure can be used to convert the Ax = b in the canonical form.[4]
  9. Using row operations to convert a matrix into reduced row echelon form is sometimes called Gauss–Jordan elimination.[5]
  10. A variant of Gaussian elimination called Gauss–Jordan elimination can be used for finding the inverse of a matrix, if it exists.[5]
  11. To convert any matrix to its reduced row echelon form, Gauss-Jordan elimination is performed.[6]
  12. Gauss-Jordan elimination is a mechanical procedure for transforming a given system of linear equations to \(Rx = d\) with \(R\) in RREF using only elementary row operations.[7]
  13. This more-complete method of solving is called "Gauss-Jordan elimination" (with the equations ending up in what is called "reduced-row-echelon form").[8]
  14. Gauss–Jordan elimination is backward stable for matrices diagonally dominant by rows and not for those diagonally dominant by columns.[9]
  15. Use Gauss-Jordan elimination on augmented matrices to solve a linear system and calculate the matrix inverse.[10]
  16. We apply the Gauss-Jordan Elimination method: we obtain the reduced row echelon form from the augmented matrix of the equation system by performing elemental operations in rows (or columns).[11]
  17. But in case of Gauss-Jordan Elimination Method, we only have to form a reduced row echelon form (diagonal matrix).[12]
  18. Gauss-Jordan Elimination Method can be used for finding the solution of a systems of linear equations which is applied throughout the mathematics.[12]
  19. The Gauss-Jordan Elimination method can be used in determining the inverse of a square matrix.[12]

소스

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'gauss'}, {'OP': '*'}, {'LOWER': 'jordan'}, {'LEMMA': 'elimination'}]