"Zonal spherical function"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(→‎노트: 새 문단)
(→‎메타데이터: 새 문단)
35번째 줄: 35번째 줄:
 
===소스===
 
===소스===
 
  <references />
 
  <references />
 +
 +
== 메타데이터 ==
 +
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q8073863 Q8073863]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'cohen'}, {'OP': '*'}, {'LOWER': 'lenstra'}, {'LEMMA': 'heuristic'}]
 +
* [{'LOWER': 'cohen'}, {'OP': '*'}, {'LEMMA': 'Lenstra'}]
 +
* [{'LOWER': 'zonal'}, {'LOWER': 'spherical'}, {'LEMMA': 'function'}]

2021년 2월 22일 (월) 20:20 판

노트

말뭉치

  1. For zonal spherical functions see Spherical harmonics.[1]
  2. Zonal spherical functions have been explicitly determined for real semisimple groups by Harish-Chandra.[2]
  3. The abstract functional analytic theory of zonal spherical functions was first developed by Roger Godement.[2]
  4. For semisimple p-adic Lie groups, the theory of zonal spherical functions and Hecke algebras was first developed by Satake and Ian G. Macdonald.[2]
  5. Properties 2, 3 and 4 or properties 3, 4 and 5 characterize zonal spherical functions.[2]

소스

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'cohen'}, {'OP': '*'}, {'LOWER': 'lenstra'}, {'LEMMA': 'heuristic'}]
  • [{'LOWER': 'cohen'}, {'OP': '*'}, {'LEMMA': 'Lenstra'}]
  • [{'LOWER': 'zonal'}, {'LOWER': 'spherical'}, {'LEMMA': 'function'}]

노트

말뭉치

  1. Previous work characterized certain left coideal subalgebras in the quantized enveloping algebra and established an appropriate framework for quantum zonal spherical functions.[1]
  2. The zonal spherical functions are a broad extension of the notion of zonal spherical harmonics to allow for a more general symmetry group.[2]
  3. Zonal spherical functions have been explicitly determined for real semisimple groups by Harish-Chandra.[3]
  4. The abstract functional analytic theory of zonal spherical functions was first developed by Roger Godement.[3]
  5. For semisimple p-adic Lie groups, the theory of zonal spherical functions and Hecke algebras was first developed by Satake and Ian G. Macdonald.[3]
  6. Properties 2, 3 and 4 or properties 3, 4 and 5 characterize zonal spherical functions.[3]
  7. I tried to rotate zonal spherical function, projected onto spherical harmonic basis.[4]
  8. For zonal spherical functions see Spherical harmonics.[5]
  9. But to determine the explicitform of zonal spherical functions and the Plancherel measure, it seems necessary toknow the (infinite) matrix of this Fourier transformation more explicitly.[6]
  10. 3 zonal spherical functions k(x), k(y) = Gk(x, y), where Gk are Gegenbauer polynomials, zonal spherical functions associated with Harmk(Sd1).[7]
  11. 4 zonal spherical functions k(x), k(y) = Gk(x, y), where Gk are Gegenbauer polynomials, zonal spherical functions associated with Harmk(Sd1).[7]

소스

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'cohen'}, {'OP': '*'}, {'LOWER': 'lenstra'}, {'LEMMA': 'heuristic'}]
  • [{'LOWER': 'cohen'}, {'OP': '*'}, {'LEMMA': 'Lenstra'}]
  • [{'LOWER': 'zonal'}, {'LOWER': 'spherical'}, {'LEMMA': 'function'}]