"극한의 엄밀한 정의 - 엡실론과 델타"의 두 판 사이의 차이
(피타고라스님이 이 페이지를 개설하였습니다.) |
|||
1번째 줄: | 1번째 줄: | ||
+ | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>예</h5> | ||
+ | |||
+ | <math>\lim_{(x,y)\to(3,2)}\frac{y}{x-1}=1</math> 의 증명 | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | First we prove a set of inequalities. | ||
+ | |||
+ | Assume <math>\sqrt{(x-3)^2+(y-2)^2}<\delta</math>. | ||
+ | |||
+ | (1) <math>|x-3|\leq \sqrt{(x-3)^2+(y-2)^2}<\delta</math> implies <math>|x-3|<\delta</math> | ||
+ | |||
+ | (2) <math>|y-2|\leq \sqrt{(x-3)^2+(y-2)^2}<\delta</math> implies <math>|y-2|<\delta</math> | ||
+ | |||
+ | (3) <math>|y-x+1|=|(y-2)-(x-3)|\leq |y-2|+|x-3|<2\delta</math> | ||
+ | |||
+ | (4) By rewriting <math>|x-3|<\delta</math> as <math>|(x-1)-2|<\delta</math>, we get <math>2-\delta<|x-1|<2+\delta</math>. | ||
+ | |||
+ | |||
+ | |||
+ | Let <math>\epsilon>0</math> be given. Let <math>\delta</math> be the minimum of <math>\{1,{\epsilon}/2\}</math>. | ||
+ | |||
+ | Then from above inequalities, we can say | ||
+ | |||
+ | <math>|y-x+1|<2\delta\leq \epsilon</math> by (3) | ||
+ | |||
+ | <math>|x-1|>2-\delta\geq 1</math> (by (4)) so <math>\frac{1}{|x-1|}<1</math>. | ||
+ | |||
+ | <math>|\frac{y}{x-1}-1|=|\frac{y-x+1}{x-1}|<|y-x+1|<\epsilon</math> | ||
+ | |||
+ | Therefore, | ||
+ | |||
+ | <math>\lim_{(x,y)\to(3,2)}\frac{y}{x-1}=1</math>. | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>역사</h5> | ||
+ | |||
+ | |||
+ | |||
+ | * http://www.google.com/search?hl=en&tbs=tl:1&q= | ||
+ | * [[수학사연표 (역사)|수학사연표]] | ||
+ | * | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>메모</h5> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>관련된 항목들</h5> | ||
+ | |||
+ | * [[05 수열의 극한]] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5> | ||
+ | |||
+ | * 단어사전 http://www.google.com/dictionary?langpair=en|ko&q= | ||
+ | * 발음사전 http://www.forvo.com/search/ | ||
+ | * [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br> | ||
+ | ** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr= | ||
+ | * [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교] | ||
+ | * [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>사전 형태의 자료</h5> | ||
+ | |||
+ | * http://ko.wikipedia.org/wiki/ | ||
+ | * http://en.wikipedia.org/wiki/ | ||
+ | * http://www.proofwiki.org/wiki/ | ||
+ | * http://www.wolframalpha.com/input/?i= | ||
+ | * [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions] | ||
+ | * [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br> | ||
+ | ** http://www.research.att.com/~njas/sequences/?q= | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>관련논문</h5> | ||
+ | |||
+ | * [http://en.wikipedia.org/wiki/%28%CE%B5,_%CE%B4%29-definition_of_limit http://en.wikipedia.org/wiki/(ε,_δ)-definition_of_limit] | ||
+ | * http://www.jstor.org/action/doBasicSearch?Query= | ||
+ | * http://www.ams.org/mathscinet | ||
+ | * http://dx.doi.org/ | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>관련도서</h5> | ||
+ | |||
+ | * 도서내검색<br> | ||
+ | ** http://books.google.com/books?q= | ||
+ | ** http://book.daum.net/search/contentSearch.do?query= | ||
+ | * 도서검색<br> | ||
+ | ** http://books.google.com/books?q= | ||
+ | ** http://book.daum.net/search/mainSearch.do?query= | ||
+ | ** http://book.daum.net/search/mainSearch.do?query= | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>관련기사</h5> | ||
+ | |||
+ | * 네이버 뉴스 검색 (키워드 수정)<br> | ||
+ | ** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query= | ||
+ | ** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query= | ||
+ | ** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query= | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>링크</h5> | ||
+ | |||
+ | * 구글 블로그 검색<br> | ||
+ | ** http://blogsearch.google.com/blogsearch?q= | ||
+ | * [http://navercast.naver.com/science/list 네이버 오늘의과학] | ||
+ | * [http://www.ams.org/mathmoments/ Mathematical Moments from the AMS] | ||
+ | * [http://betterexplained.com/ BetterExplained] | ||
+ | * [http://www.exampleproblems.com/ http://www.exampleproblems.com] |
2012년 2월 5일 (일) 05:21 판
이 항목의 스프링노트 원문주소
개요
예
\(\lim_{(x,y)\to(3,2)}\frac{y}{x-1}=1\) 의 증명
First we prove a set of inequalities.
Assume \(\sqrt{(x-3)^2+(y-2)^2}<\delta\).
(1) \(|x-3|\leq \sqrt{(x-3)^2+(y-2)^2}<\delta\) implies \(|x-3|<\delta\)
(2) \(|y-2|\leq \sqrt{(x-3)^2+(y-2)^2}<\delta\) implies \(|y-2|<\delta\)
(3) \(|y-x+1|=|(y-2)-(x-3)|\leq |y-2|+|x-3|<2\delta\)
(4) By rewriting \(|x-3|<\delta\) as \(|(x-1)-2|<\delta\), we get \(2-\delta<|x-1|<2+\delta\).
Let \(\epsilon>0\) be given. Let \(\delta\) be the minimum of \(\{1,{\epsilon}/2\}\).
Then from above inequalities, we can say
\(|y-x+1|<2\delta\leq \epsilon\) by (3)
\(|x-1|>2-\delta\geq 1\) (by (4)) so \(\frac{1}{|x-1|}<1\).
\(|\frac{y}{x-1}-1|=|\frac{y-x+1}{x-1}|<|y-x+1|<\epsilon\)
Therefore,
\(\lim_{(x,y)\to(3,2)}\frac{y}{x-1}=1\).
역사
메모
관련된 항목들
수학용어번역
- 단어사전 http://www.google.com/dictionary?langpair=en%7Cko&q=
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://www.proofwiki.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
- http://en.wikipedia.org/wiki/(ε,_δ)-definition_of_limit
- http://www.jstor.org/action/doBasicSearch?Query=
- http://www.ams.org/mathscinet
- http://dx.doi.org/
관련도서
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)