"다이로그 항등식 (dilogarithm identities)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
  
 
* [[다이로그 항등식 (dilogarithm identities)|dilogarithm 항등식]]<br>
 
* [[다이로그 항등식 (dilogarithm identities)|dilogarithm 항등식]]<br>
7번째 줄: 7번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">개요</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5>
  
 
* [[로저스 다이로그 함수 (Rogers' dilogarithm)|로저스 dilogarithm]] <math>L(x)</math><br>
 
* [[로저스 다이로그 함수 (Rogers' dilogarithm)|로저스 dilogarithm]] <math>L(x)</math><br>
17번째 줄: 17번째 줄:
 
 
 
 
  
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;">오일러</h5>
+
<h5 style="margin: 0px; line-height: 2em;">오일러</h5>
  
 
<math>L(1)=\frac{\pi^2}{6}</math>
 
<math>L(1)=\frac{\pi^2}{6}</math>
24번째 줄: 24번째 줄:
  
 
<math>2L(\frac{1}{2})=L(1)</math>
 
<math>2L(\frac{1}{2})=L(1)</math>
 +
 +
<math>L(\frac{1}{2^6}-2L(\frac{1}{2^3})-6L(\frac{1}{4})+2L(1)=0</math>
  
 
 
 
 
29번째 줄: 31번째 줄:
 
 
 
 
  
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;">란덴</h5>
+
<h5 style="margin: 0px; line-height: 2em;">란덴</h5>
  
 
<math>5L(\frac{3-\sqrt{5}}{2})=2L(1)</math>
 
<math>5L(\frac{3-\sqrt{5}}{2})=2L(1)</math>
39번째 줄: 41번째 줄:
 
 
 
 
  
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;">콕세터(1935) & Lewin </h5>
+
<h5 style="margin: 0px; line-height: 2em;">콕세터(1935) & Lewin </h5>
  
 
<math>\rho=\tfrac{1}{2}(\sqrt{5}-1)</math> 는 [[황금비]]
 
<math>\rho=\tfrac{1}{2}(\sqrt{5}-1)</math> 는 [[황금비]]
55번째 줄: 57번째 줄:
 
 
 
 
  
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;">왓슨 </h5>
+
<h5 style="margin: 0px; line-height: 2em;">왓슨 </h5>
  
 
<math>\alpha, -\beta, -\gamma^{-1}</math> 가 방정식<math>x^3+2x^2-x-1=0</math> 의 해라고 하자.
 
<math>\alpha, -\beta, -\gamma^{-1}</math> 가 방정식<math>x^3+2x^2-x-1=0</math> 의 해라고 하자.
69번째 줄: 71번째 줄:
 
 
 
 
  
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;">Loxton & Lewin</h5>
+
<h5 style="margin: 0px; line-height: 2em;">Loxton & Lewin</h5>
  
 
<math>x, -y, -z^{-1}</math>가 방정식 <math>x^3+3x^2-1=0</math>의 해라고 하자.
 
<math>x, -y, -z^{-1}</math>가 방정식 <math>x^3+3x^2-1=0</math>의 해라고 하자.
83번째 줄: 85번째 줄:
 
 
 
 
  
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;">Lewin</h5>
+
<h5 style="margin: 0px; line-height: 2em;">Lewin</h5>
  
 
<math>x=\frac{\sqrt{13}-3}{2}</math>
 
<math>x=\frac{\sqrt{13}-3}{2}</math>
93번째 줄: 95번째 줄:
 
 
 
 
  
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;">Browkin</h5>
+
<h5 style="margin: 0px; line-height: 2em;">Browkin</h5>
  
 
<math>x=\frac{\sqrt{13}-1}{6}</math>, <math>z=\frac{\sqrt{13}+1}{6}</math>
 
<math>x=\frac{\sqrt{13}-1}{6}</math>, <math>z=\frac{\sqrt{13}+1}{6}</math>
105번째 줄: 107번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">재미있는 사실</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">재미있는 사실</h5>
  
 
 
 
 
116번째 줄: 118번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">역사</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">역사</h5>
  
 
 
 
 
128번째 줄: 130번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">메모</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">메모</h5>
  
 
 
 
 
134번째 줄: 136번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련된 항목들</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 항목들</h5>
  
 
 
 
 
140번째 줄: 142번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">수학용어번역</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5>
  
 
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=
 
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=
153번째 줄: 155번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">사전 형태의 자료</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">사전 형태의 자료</h5>
  
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
161번째 줄: 163번째 줄:
 
* http://www.wolframalpha.com/input/?i=
 
* http://www.wolframalpha.com/input/?i=
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
* [http://www.research.att.com/~njas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
+
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
 
** http://www.research.att.com/~njas/sequences/?q=
 
** http://www.research.att.com/~njas/sequences/?q=
  
168번째 줄: 170번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련논문</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련논문</h5>
  
 +
* [http://arxiv.org/abs/math.CA/9906134 A seventeenth-order polylogarithm ladder]<br>
 +
** David H. Bailey, David J. Broadhurst
 
* [http://dx.doi.org/10.1023/A:1009709927327 Algebraic Dilogarithm Identities]<br>
 
* [http://dx.doi.org/10.1023/A:1009709927327 Algebraic Dilogarithm Identities]<br>
 
** Basil Gordon  and Richard J. Mcintosh, 1997
 
** Basil Gordon  and Richard J. Mcintosh, 1997
188번째 줄: 192번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련도서</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서</h5>
  
 
*  도서내검색<br>
 
*  도서내검색<br>
202번째 줄: 206번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련기사</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련기사</h5>
  
 
*  네이버 뉴스 검색 (키워드 수정)<br>
 
*  네이버 뉴스 검색 (키워드 수정)<br>
213번째 줄: 217번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">블로그</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">블로그</h5>
  
 
*  구글 블로그 검색<br>
 
*  구글 블로그 검색<br>

2010년 2월 9일 (화) 18:14 판

이 항목의 스프링노트 원문주소

 

 

개요
  • 로저스 dilogarithm \(L(x)\)
  • dilogarithm 항등식
    대수적수 \(x_i\)와 유리수 \(c\)에 대한 다음과 같은 형태의 항등식
    \(\sum_{i=1}^{N}L(x_i)=cL(1)\)
  • Polylogarithm ladders 으로 불리기도 한다

 

 

오일러

\(L(1)=\frac{\pi^2}{6}\)

\(-2L(-1)=L(1)\)

\(2L(\frac{1}{2})=L(1)\)

\(L(\frac{1}{2^6}-2L(\frac{1}{2^3})-6L(\frac{1}{4})+2L(1)=0\)

 

 

란덴

\(5L(\frac{3-\sqrt{5}}{2})=2L(1)\)

\(5L(\frac{-1+\sqrt{5}}{2})=3L(1)\)

 

 

콕세터(1935) & Lewin 

\(\rho=\tfrac{1}{2}(\sqrt{5}-1)\) 는 황금비

\(L(\rho^6)=4L(\rho^3)+3L(\rho^2)-6L(\rho)+\frac{7\pi^2}{30}\)

\(L(\rho^{12})=2L(\rho^6)+3L(\rho^4)+4L(\rho^3)-6L(\rho^2)+\frac{7\pi^2}{10}\)

\(L(\rho^{20})=2L(\rho^{10})+15L(\rho^4)-10L(\rho^2)+\frac{\pi^2}{5}\)

[Lewin] \(L(\rho^{24})=6L(\rho^{8})+8L(\rho^6)-6L(\rho^4)+\frac{\pi^2}{30}\)

 

 

왓슨 

\(\alpha, -\beta, -\gamma^{-1}\) 가 방정식\(x^3+2x^2-x-1=0\) 의 해라고 하자.

\(L(\alpha)-L(\alpha^2)=1/7L(1)\)

\(L(\beta)+1/2L(\beta^2) = 5/7L(1)\)

\(L(\gamma)+1/2L(\gamma^2) = 4/7L(1)\)

 

 

Loxton & Lewin

\(x, -y, -z^{-1}\)가 방정식 \(x^3+3x^2-1=0\)의 해라고 하자.

\(L(x^3)-3L(x^2)-3L(x)=-\frac{7}{3}L(1)\)

\(L(y^6)-2L(y^3)-9L(y^2)+6L(y)=-\frac{2}{3}L(1)\)

\(L(z^6)-2L(z^3)-9L(z^2)+6L(z)=\frac{2}{3}L(1)\)

 

 

Lewin

\(x=\frac{\sqrt{13}-3}{2}\)

\(L(x^6)-4L(x^3)-6L(x^2)+24L(x)=7L(1)\)

 

 

Browkin

\(x=\frac{\sqrt{13}-1}{6}\), \(z=\frac{\sqrt{13}+1}{6}\)

\(L(x^6)-6L(x^3)+L(x^2)+18L(x)=8L(1)\)

\(L(z^6)-3L(z^3)-6L(z^2)+9L(z)=2L(1)\)

 

 

재미있는 사실

 

 

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서

 

 

관련기사

 

 

블로그