"단진자의 주기와 타원적분"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
43번째 줄: 43번째 줄:
 
주기를 구하면,
 
주기를 구하면,
  
<math>T = 4\sqrt{\ell\over {2g}}\int_{0}^{\frac{\pi}{2}} \frac{2A^2\cos\phi\sin\phi}{A\cos\phi\sin\theta}\,d\phi=4\sqrt{\ell\over {2g}}\int_{0}^{\frac{\pi}{2}} \frac{2A\sin\phi}{A\sin\phi\sqrt{2-A^2\sin\phi}}\,d\phi=4\sqrt{\ell\over {2g}}\int_{0}^{\frac{\pi}{2}} \frac{2}{\sqrt{2-A^2\sin\phi}}\,d\phi</math>
+
<math>T = 4\sqrt{\ell\over {2g}}\int_{0}^{\frac{\pi}{2}} \frac{2A^2\cos\phi\sin\phi}{A\cos\phi\sin\theta}\,d\phi=4\sqrt{\ell\over {2g}}\int_{0}^{\frac{\pi}{2}} \frac{2A\sin\phi}{A\sin\phi\sqrt{2-A^2\sin^2\phi}}\,d\phi=4\sqrt{\ell\over {2g}}\int_{0}^{\frac{\pi}{2}} \frac{2}{\sqrt{2-A^2\sin^2\phi}}\,d\phi</math>
  
 
<math>A=\sqrt{2}k</math>로 두면,
 
<math>A=\sqrt{2}k</math>로 두면,
  
<math>T = 4\sqrt{\ell\over {g}}\int_{0}^{\frac{\pi}{2}} \frac{1}{\sqrt{1-k^2\sin\phi}}\,d\phi</math>를 얻는다. ■
+
<math>T = 4\sqrt{\ell\over {g}}\int_{0}^{\frac{\pi}{2}} \frac{1}{\sqrt{1-k^2\sin^2\phi}}\,d\phi</math>를 얻는다. ■
  
 
 
 
 
133번째 줄: 133번째 줄:
 
*  네이버 뉴스 검색 (키워드 수정)<br>
 
*  네이버 뉴스 검색 (키워드 수정)<br>
 
** [http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=%EB%8B%A8%EC%A7%84%EC%9E%90 http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=단진자]
 
** [http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=%EB%8B%A8%EC%A7%84%EC%9E%90 http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=단진자]
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
+
** [http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=%EB%93%B1%EC%8B%9C%EC%84%B1 http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=등시성]
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
  

2010년 10월 2일 (토) 17:00 판

이 항목의 스프링노트 원문주소

 

 

개요
  • 단진자의 운동을 기술하는 미분방정식은 다음과 같이 주어짐
    \({d^2\theta\over dt^2}+{g\over \ell} \sin\theta=0 \)
  • 비선형 미분방정식이며, 대학수준의 역학에서는 \(\theta\)가 0에 매우 가깝다고 가정하고, \(\sin\theta\approx \theta\) 임을 이용하여 다음과 같은 미분방정식으로 대체한다
    \(d^2\theta\over dt^2}+{g\over \ell}\theta=0\)
    이 때 단진자의 주기는 \(2\pi\sqrt\frac{\ell}{g}\) 로 주어진다
  • 근사가 아닌 원래 미분방정식에 대한 진자의 주기를 구하기 위해서는, 타원적분이 필요하다

 

 

 

단진자의 주기
  • 진폭이 \(\theta_0\)인 단진자의 주기는 다음과 같다
    \(T = 4\sqrt{\ell\over {g}}\int_{0}^{\frac{\pi}{2}} \frac{1}{\sqrt{1-k^2\sin^2\phi}}\,d\phi\). 여기서 \(k=\sin\frac{\theta_0}{2}\)

(증명)

진자의 속도는 \({d\theta\over dt} = \sqrt{{2g\over \ell}\left(\cos\theta-\cos\theta_0\right)}\) 로 주어진다. 따라서 주기를 다음과 같이 쓸 수 있다.

\(T = 4\sqrt{\ell\over {2g}}\int^{\theta_0}_0 {1\over\sqrt{\cos\theta-\cos\theta_0}}\,d\theta\)

여기서 \(A=\sqrt{1-\cos\theta_0}\) 로 두고, 다음과 같은 치환을 사용하자.

\(\cos\theta-\cos\theta_0=(A\cos\phi)^2\)

그러면,

\(\cos\theta=1-A^2\sin^2\phi\)

\(\sin\theta=\sqrt{1-\cos^2\theta}=A\sin\phi\sqrt{2-A^2\sin^2\phi}\)

\(\sin\theta \,d\theta=2A^2\cos\phi\sin\phi\) 를 얻는다.

주기를 구하면,

\(T = 4\sqrt{\ell\over {2g}}\int_{0}^{\frac{\pi}{2}} \frac{2A^2\cos\phi\sin\phi}{A\cos\phi\sin\theta}\,d\phi=4\sqrt{\ell\over {2g}}\int_{0}^{\frac{\pi}{2}} \frac{2A\sin\phi}{A\sin\phi\sqrt{2-A^2\sin^2\phi}}\,d\phi=4\sqrt{\ell\over {2g}}\int_{0}^{\frac{\pi}{2}} \frac{2}{\sqrt{2-A^2\sin^2\phi}}\,d\phi\)

\(A=\sqrt{2}k\)로 두면,

\(T = 4\sqrt{\ell\over {g}}\int_{0}^{\frac{\pi}{2}} \frac{1}{\sqrt{1-k^2\sin^2\phi}}\,d\phi\)를 얻는다. ■

 

 

제1종 타원적분과의 관계

 

 

재미있는 사실

 

 

역사

 

 

관련된 다른 주제들[[타원적분(통합됨)|]]

 

 

수학용어번역

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서 및 추천도서

 

 

관련기사

 

 

블로그