"데데킨트 합"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
55번째 줄: 55번째 줄:
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련도서 및 추천도서</h5>
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련도서 및 추천도서</h5>
  
 +
* [http://math.sfsu.edu/beck/ccd.html Computing the Continuous Discretely: Integer-Point Enumeration in Polyhedra]<br>
 +
**  Matthias Beck and Sinai Robins, Springer, 2007<br>
 
*  Dedekind Sums, The Carus Mathematical Monographs<br>
 
*  Dedekind Sums, The Carus Mathematical Monographs<br>
 
**  H. Rademacher and E. Grosswald<br>
 
**  H. Rademacher and E. Grosswald<br>
77번째 줄: 79번째 줄:
  
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">참고할만한 자료</h5>
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">참고할만한 자료</h5>
 +
 +
* [http://arxiv.org/abs/math.NT/0112077 Dedekind cotangent sums]<br>
 +
** Matthias Beck, Acta Arithmetica 109, no.2 (2003), 109-130   
  
 
* [http://www.jstor.org/stable/2316571?&Search=yes&term=Emil&term=Grosswald,&term=,&term="Dedekind-Rademacher+sums"&list=hide&searchUri=/action/doBasicSearch%3FQuery%3DEmil%2BGrosswald%252C%2B%2522%2BDedekind-Rademacher%2Bsums%2B%2522%252C%26x%3D0%26y%3D0%26wc%3Don&item=1&ttl=3&returnArticleService=showArticle Dedekind-Rademacher Sums]<br>
 
* [http://www.jstor.org/stable/2316571?&Search=yes&term=Emil&term=Grosswald,&term=,&term="Dedekind-Rademacher+sums"&list=hide&searchUri=/action/doBasicSearch%3FQuery%3DEmil%2BGrosswald%252C%2B%2522%2BDedekind-Rademacher%2Bsums%2B%2522%252C%26x%3D0%26y%3D0%26wc%3Don&item=1&ttl=3&returnArticleService=showArticle Dedekind-Rademacher Sums]<br>
 
** Emil Grosswald, The American Mathematical Monthly, Vol. 78, No. 6 (Jun. - Jul., 1971), pp. 639-644
 
** Emil Grosswald, The American Mathematical Monthly, Vol. 78, No. 6 (Jun. - Jul., 1971), pp. 639-644
*  
+
* [http://projecteuclid.org/DPubS?verb=Display&version=1.0&service=UI&handle=euclid.nmj/1118797877&page=record The reciprocity of Dedekind sums and the factor set for the universal covering group of] <math>{\rm SL}(2,\,R)</math><br>
**  
+
** Tetsuya Asai, Source: Nagoya Math. J. Volume 37 (1970), 67-80.
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/Dedekind_sum
 
* http://en.wikipedia.org/wiki/Dedekind_sum

2009년 8월 18일 (화) 05:16 판

간단한 소개
  • 다음과 같이 sawtooth 함수를 정의하자
    \(\left((x)\right)= \begin{cases} x-\lfloor x\rfloor - 1/2 & \mbox{ if }x\in\mathbb{R}\setminus\mathbb{Z} \\ 0 & \mbox{ if } x\in\mathbb{Z} \end{cases}\)
    [/pages/3985465/attachments/1997179 Discontinuous-function-and-Fourier.gif]

 

  • 서로 소인 두 정수 \(h, k>0\)에 대하여 데데킨트 합 \(s(h,k)\)은 다음과 같이 정의됨
    \(s(h,k)=\sum_{n\mod k} \left( \left( \frac{n}{k} \right) \right) \left( \left( \frac{hn}{k} \right) \right)\)


상호법칙

(정리) 데데킨트
서로 소인 양의 정수 \(b\)와 \(c\)에 대하여 다음이 성립한다.

\(s(b,c)+s(c,b) =\frac{1}{12}\left(\frac{b}{c}+\frac{1}{bc}+\frac{c}{b}\right)-\frac{1}{4}\)

 

 

일반화

\(D(a,b;c)=\sum_{n\mod c} \left( \left( \frac{an}{c} \right) \right) \left( \left( \frac{bn}{c} \right) \right)\)

 

 

상위 주제

 

 

재미있는 사실

 

 

역사

 

 

관련된 다른 주제들

 

관련도서 및 추천도서

 

 

수학용어번역

 

참고할만한 자료

 

 

관련기사

 

 

블로그