"디리클레 단위 정리와 수체의 regulator"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로) |
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “<h5 (.*)">” 문자열을 “==” 문자열로) |
||
1번째 줄: | 1번째 줄: | ||
− | + | ==이 항목의 스프링노트 원문주소== | |
* [[디리클레 unit 정리]]<br> | * [[디리클레 unit 정리]]<br> | ||
7번째 줄: | 7번째 줄: | ||
− | + | ==개요== | |
* 수체(number field)K의 대수적정수 <math>\mathfrak{O}_K</math> unit의 rank 에 대한 정리<br> | * 수체(number field)K의 대수적정수 <math>\mathfrak{O}_K</math> unit의 rank 에 대한 정리<br> | ||
16번째 줄: | 16번째 줄: | ||
− | + | ==실 이차수체의 경우== | |
* <math>[K : \mathbb{Q}] =2</math>, <math>r_1=2, r_2=0</math>이므로, <math>\mathfrak{O}_K^{*}</math>의 rank는 1이다<br> | * <math>[K : \mathbb{Q}] =2</math>, <math>r_1=2, r_2=0</math>이므로, <math>\mathfrak{O}_K^{*}</math>의 rank는 1이다<br> | ||
34번째 줄: | 34번째 줄: | ||
− | + | ==원분체의 예== | |
* [[원분체 (cyclotomic field)]]<br> | * [[원분체 (cyclotomic field)]]<br> | ||
47번째 줄: | 47번째 줄: | ||
− | + | ==higher regulator== | |
* [[데데킨트 제타함수]]에서 가져옴<br> <br><math>[K : \mathbb{Q}] = r_1 + 2r_2</math><br><math>\zeta_{K}(2)\sim_{\mathbb{Q^{*}}} \sqrt{|d_{F}|}\pi^{2(r_1 + r_2)}\det\{D(\sigma_i(\xi_j))\}_{1\leq i,j\leq r_2}</math><br> 여기서 <math>\xi_i,(i=1,\cdots, r_2)</math> 는 Bloch group <math>B(K)\otimes \mathbb{Q}</math>의 Q-basis<br> D는 [[블로흐-비그너 다이로그(Bloch-Wigner dilogarithm)|Bloch-Wigner dilogarithm]] 함수<br> | * [[데데킨트 제타함수]]에서 가져옴<br> <br><math>[K : \mathbb{Q}] = r_1 + 2r_2</math><br><math>\zeta_{K}(2)\sim_{\mathbb{Q^{*}}} \sqrt{|d_{F}|}\pi^{2(r_1 + r_2)}\det\{D(\sigma_i(\xi_j))\}_{1\leq i,j\leq r_2}</math><br> 여기서 <math>\xi_i,(i=1,\cdots, r_2)</math> 는 Bloch group <math>B(K)\otimes \mathbb{Q}</math>의 Q-basis<br> D는 [[블로흐-비그너 다이로그(Bloch-Wigner dilogarithm)|Bloch-Wigner dilogarithm]] 함수<br> | ||
55번째 줄: | 55번째 줄: | ||
− | + | ==역사== | |
67번째 줄: | 67번째 줄: | ||
− | + | ==메모== | |
* Math Overflow http://mathoverflow.net/search?q=<br> | * Math Overflow http://mathoverflow.net/search?q=<br> | ||
75번째 줄: | 75번째 줄: | ||
− | + | ==관련된 항목들== | |
* [[이차 수체에 대한 디리클레 class number 공식 |이차 수체에 대한 디리클레 class number 공식]]<br> | * [[이차 수체에 대한 디리클레 class number 공식 |이차 수체에 대한 디리클레 class number 공식]]<br> | ||
86번째 줄: | 86번째 줄: | ||
− | + | ==수학용어번역== | |
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q= | * 단어사전 http://www.google.com/dictionary?langpair=en|ko&q= | ||
99번째 줄: | 99번째 줄: | ||
− | + | ==사전 형태의 자료== | |
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
112번째 줄: | 112번째 줄: | ||
− | + | ==관련논문== | |
* http://www.jstor.org/action/doBasicSearch?Query= | * http://www.jstor.org/action/doBasicSearch?Query= | ||
122번째 줄: | 122번째 줄: | ||
− | + | ==관련도서== | |
* 도서내검색<br> | * 도서내검색<br> | ||
136번째 줄: | 136번째 줄: | ||
− | + | ==관련기사== | |
* 네이버 뉴스 검색 (키워드 수정)<br> | * 네이버 뉴스 검색 (키워드 수정)<br> | ||
147번째 줄: | 147번째 줄: | ||
− | + | ==블로그== | |
* 구글 블로그 검색<br> | * 구글 블로그 검색<br> |
2012년 11월 1일 (목) 13:26 판
이 항목의 스프링노트 원문주소
개요
- 수체(number field)K의 대수적정수 \(\mathfrak{O}_K\) unit의 rank 에 대한 정리
- \([K : \mathbb{Q}] = r_1 + 2r_2\) 인 경우, \(\mathfrak{O}_K^{*}\)의 rank는 \(r_1+r_2-1\)이다
실 이차수체의 경우
- \([K : \mathbb{Q}] =2\), \(r_1=2, r_2=0\)이므로, \(\mathfrak{O}_K^{*}\)의 rank는 1이다
- \(\mathfrak{O}_K^{*}\)의 생성원 \(\epsilon_K\)을 fundamental unit이라 하며 펠 방정식의 해를 구하면 얻어진다
- 이차 수체에 대한 디리클레 class number 공식
(정리) 디리클레 class number 공식
실 이차 수체(real quadratic field) \(K\)에 대하여, 다음 등식이 성립한다.
\( \lim_{s\to 1} (s-1)\zeta_K(s)=\frac{2 h_K \ln \epsilon_K}{\sqrt{d_K}}\)
\(h_K\) 는 class number, \(d_K\)는 \(K\)의 판별식(discriminant), \(\epsilon_K\)은 fundamental unit (실 이차수체(real quadratic field) 의 class number와 fundamental unit 참조)
원분체의 예
- 원분체 (cyclotomic field)
- \(K=\mathbb{Q}\left(\zeta _7\right)\)
- \([K : \mathbb{Q}] =6\), \(r_1=0, r_2=3\)이므로, \(\mathfrak{O}_K^{*}\)의 rank는 2이다
- fundamental units : \(1+\zeta _7\)와 \(1+\zeta _7+\zeta _7^2\)
- regulator \(R_{K}\)는 2×3행렬
\(\left( \begin{array}{ccc} \log \left(2 \left(1+\sin \left(\frac{3 \pi }{14}\right)\right)\right) & \log \left(2-2 \sin \left(\frac{\pi }{14}\right)\right) & \log \left(2-2 \cos \left(\frac{\pi }{7}\right)\right) \\ \log \left(3-2 \sin \left(\frac{\pi }{14}\right)+4 \sin \left(\frac{3 \pi }{14}\right)\right) & \log \left(3-4 \sin \left(\frac{\pi }{14}\right)-2 \cos \left(\frac{\pi }{7}\right)\right) & \log \left(3+2 \sin \left(\frac{3 \pi }{14}\right)-4 \cos \left(\frac{\pi }{7}\right)\right) \end{array} \right)\)
의 minor를 계산하여 얻을 수 있다 - \(R_K\approx 2.10182\cdots\)
higher regulator
- 데데킨트 제타함수에서 가져옴
\([K : \mathbb{Q}] = r_1 + 2r_2\)
\(\zeta_{K}(2)\sim_{\mathbb{Q^{*}}} \sqrt{|d_{F}|}\pi^{2(r_1 + r_2)}\det\{D(\sigma_i(\xi_j))\}_{1\leq i,j\leq r_2}\)
여기서 \(\xi_i,(i=1,\cdots, r_2)\) 는 Bloch group \(B(K)\otimes \mathbb{Q}\)의 Q-basis
D는 Bloch-Wigner dilogarithm 함수
역사
메모
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
수학용어번역
- 단어사전 http://www.google.com/dictionary?langpair=en%7Cko&q=
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Dirichlet's_unit_theorem
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
관련도서
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)