"라그랑지 resolvent"의 두 판 사이의 차이
1번째 줄: | 1번째 줄: | ||
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소</h5> | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소</h5> | ||
+ | |||
+ | * [[라그랑지 resolvent|라그랑지 resolvents]] | ||
7번째 줄: | 9번째 줄: | ||
<h5>개요</h5> | <h5>개요</h5> | ||
− | * | + | * 다음과 같은 곳에서 등장<br> |
+ | ** [[가우스 합]] | ||
+ | ** 가해인 다항식의 근을 찾는 과정 | ||
+ | * <math>\chi</math>-weighted average over the Galois orbit of <math>\theta</math> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>정의</h5> | ||
+ | |||
+ | * <math>K/F</math> 는 순환체확장 | ||
+ | * <math>\text{Gal}(K/F)</math> 갈루아 군 | ||
+ | * charater <math>\chi : \text{Gal}(K/F) \to F</math>와 <math>\theta\in K</math>에 대하여 라그랑지 resolvent를 다음과 같이 정의함<br><math>R(\theta,\chi)=\sum_{g\in G}\chi(g)g(\theta)\in K</math><br> | ||
128번째 줄: | 143번째 줄: | ||
<h5>리뷰논문, 에세이, 강의노트</h5> | <h5>리뷰논문, 에세이, 강의노트</h5> | ||
− | + | * [http://people.reed.edu/%7Ejerry/361/lectures/gslag.pdf WHENCE GAUSS SUMS?] | |
2012년 7월 13일 (금) 07:56 판
이 항목의 수학노트 원문주소
개요
- 다음과 같은 곳에서 등장
- 가우스 합
- 가해인 다항식의 근을 찾는 과정
- \(\chi\)-weighted average over the Galois orbit of \(\theta\)
정의
- \(K/F\) 는 순환체확장
- \(\text{Gal}(K/F)\) 갈루아 군
- charater \(\chi : \text{Gal}(K/F) \to F\)와 \(\theta\in K\)에 대하여 라그랑지 resolvent를 다음과 같이 정의함
\(R(\theta,\chi)=\sum_{g\in G}\chi(g)g(\theta)\in K\)
가우스 합의 예
- 가우스 합
- \(p\) 는 홀수인 소수
\(a=1\)이고 \(\chi(t)=$\left(\frac{t}{p}\right)\) 일 때, 가우스합은 다음과 같이 주어짐
\(g_1(\chi) := \sum_{a \in \mathbb Z/p\mathbb Z} \left(\frac{a}{p}\right)e^{2 \pi i a/p}=\sum_{a \in \mathbb Z/p\mathbb Z} \left(\frac{a}{p}\right) \zeta^a}=\sum_{a=1}^{p-1} \left(\frac{a}{p}\right) \zeta^a}\)
순환 체확장에서의 응용
\(F\)가 primitive n-th root of unity \(}\zeta_n\)를 포함하는 체
\(K\)가 F의 순환체확장이면, 적당한 원소 \(a\in F\) 가 존재하여, \(K= F(a)\)와 \(a^n\in F\) 를 만족시킨다.
\(\text{Gal}(K/F)\) 가 \(\sigma\)에 의하여 생성되는 순환군이라 하자.
\(K\)에 정의된 \(F\)-선형사상 \(\tau=\sum_{i=0}^{n-1}\zeta_n^i\sigma^i\)는 \(\{\sigma^i\}\)의 선형독립성에 의하여 0이 아님을 알 수 있고, 따라서 \(\tau(b)\in K\neq 0 \) 인 \(b\in K\)가 존재한다.
\(a=\tau(b)=\sum_{i=0}^{n-1}\zeta_n^i\sigma^i(b)\) 로 정의되는 수가 중요한 역할을 한다.
\(\sigma(a)=\zeta_n^{-1}a\) 임을 다음과 같이 보일 수 있다.
\(\sigma(a)=\sigma\left(\tau(b)\right)=\sigma\left(\sum_{i=0}^{n-1}\zeta_n^i\sigma^i(b)\right)=\sum_{i=0}^{n-1}\zeta_n^i\sigma^{i+1}(b)=\zeta_n^{-1}\sum_{i=0}^{n-1}\zeta_n^{i+1}\sigma^{i+1}(b)=\zeta_n^{-1}a\)
역사
메모
- the Gauss sum is a special case of a general symmetrizing device, the Lagrange resolvent, that has built-in equivaraiance and equation-solving properties that are easier to understand in general than in the confusingly overly-specic context of Gauss sums alone. http://people.reed.edu/~jerry/361/lectures/gslag.pdf
- http://www.math.umn.edu/~garrett/m/v/kummer_eis.pdf
- http://www.encyclopediaofmath.org/index.php/Resolvent
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
수학용어번역
- 단어사전
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 한국통계학회 통계학 용어 온라인 대조표
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
매스매티카 파일 및 계산 리소스
- http://www.wolframalpha.com/input/?i=
- http://functions.wolfram.com/
- NIST Digital Library of Mathematical Functions
- Abramowitz and Stegun Handbook of mathematical functions
- The On-Line Encyclopedia of Integer Sequences
- Numbers, constants and computation
- 매스매티카 파일 목록
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- The Online Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
리뷰논문, 에세이, 강의노트
관련논문