"라그랑지 resolvent"의 두 판 사이의 차이
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로) |
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로) |
||
1번째 줄: | 1번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소 | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소== |
* [[라그랑지 resolvent|라그랑지 resolvents]] | * [[라그랑지 resolvent|라그랑지 resolvents]] | ||
7번째 줄: | 7번째 줄: | ||
− | ==개요 | + | ==개요== |
* 다음과 같은 곳에서 등장<br> | * 다음과 같은 곳에서 등장<br> | ||
18번째 줄: | 18번째 줄: | ||
− | ==정의와 주요 성질 | + | ==정의와 주요 성질== |
* <math>K/F</math> 는 순환체확장 | * <math>K/F</math> 는 순환체확장 | ||
33번째 줄: | 33번째 줄: | ||
− | ==가우스 합의 예 | + | ==가우스 합의 예== |
* [[가우스 합]] | * [[가우스 합]] | ||
46번째 줄: | 46번째 줄: | ||
− | ==순환 체확장에서의 응용 | + | ==순환 체확장에서의 응용== |
* [[순환 체확장(cyclic extension)]]<br> | * [[순환 체확장(cyclic extension)]]<br> | ||
72번째 줄: | 72번째 줄: | ||
− | ==역사 | + | ==역사== |
83번째 줄: | 83번째 줄: | ||
− | ==메모 | + | ==메모== |
* the Gauss sum is a special case of a general symmetrizing device, the Lagrange resolvent, that has built-in equivaraiance and equation-solving properties that are easier to understand in general than in the confusingly overly-specic context of Gauss sums alone. [http://people.reed.edu/%7Ejerry/361/lectures/gslag.pdf http://people.reed.edu/~jerry/361/lectures/gslag.pdf] | * the Gauss sum is a special case of a general symmetrizing device, the Lagrange resolvent, that has built-in equivaraiance and equation-solving properties that are easier to understand in general than in the confusingly overly-specic context of Gauss sums alone. [http://people.reed.edu/%7Ejerry/361/lectures/gslag.pdf http://people.reed.edu/~jerry/361/lectures/gslag.pdf] | ||
95번째 줄: | 95번째 줄: | ||
− | ==관련된 항목들 | + | ==관련된 항목들== |
* [[방정식과 근의 공식]] | * [[방정식과 근의 공식]] | ||
104번째 줄: | 104번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역 | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역== |
* 단어사전<br> | * 단어사전<br> | ||
120번째 줄: | 120번째 줄: | ||
− | ==매스매티카 파일 및 계산 리소스 | + | ==매스매티카 파일 및 계산 리소스== |
* | * | ||
135번째 줄: | 135번째 줄: | ||
− | ==사전 형태의 자료 | + | ==사전 형태의 자료== |
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
147번째 줄: | 147번째 줄: | ||
− | ==리뷰논문, 에세이, 강의노트 | + | ==리뷰논문, 에세이, 강의노트== |
* [http://people.reed.edu/%7Ejerry/361/lectures/gslag.pdf WHENCE GAUSS SUMS?] | * [http://people.reed.edu/%7Ejerry/361/lectures/gslag.pdf WHENCE GAUSS SUMS?] | ||
155번째 줄: | 155번째 줄: | ||
− | ==관련논문 | + | ==관련논문== |
* http://www.jstor.org/action/doBasicSearch?Query= | * http://www.jstor.org/action/doBasicSearch?Query= | ||
165번째 줄: | 165번째 줄: | ||
− | ==관련도서 | + | ==관련도서== |
* 도서내검색<br> | * 도서내검색<br> | ||
** http://books.google.com/books?q= | ** http://books.google.com/books?q= | ||
** http://book.daum.net/search/contentSearch.do?query= | ** http://book.daum.net/search/contentSearch.do?query= |
2012년 11월 1일 (목) 13:33 판
이 항목의 수학노트 원문주소==
개요
- 다음과 같은 곳에서 등장
- 가우스 합
- 가해인 다항식의 근을 찾는 과정
- \(\chi\)-weighted average over the Galois orbit of \(\theta\)
정의와 주요 성질
- \(K/F\) 는 순환체확장
- \(\text{Gal}(K/F)\) 는 크기가 n인 갈루아 군
- charater \(\chi : \text{Gal}(K/F) \to F\)와 \(\theta\in K\)에 대하여 라그랑지 resolvent를 다음과 같이 정의함
\(R(\theta,\chi)=\sum_{g\in G}\chi(g)g(\theta)\in K\)
- 중요한 성질
- (equivariance) 임의의 \(g\in G\) 에 대하여 \(g(R)=\chi(g^{-1})R\)
- 임의의 \(g\in G\) 에 대하여 \(g(R^n)=R^n\). 따라서 \(R^n\in F\)
- \(\chi\) 가 character group 의 생성원인 경우,
\(\theta=\frac{1}{n}\sum_{i=0}^{n-1}R(\theta,\chi^{i})\)
- 이로부터 \(\theta\in K\) 를 F의 원소의 radical 들의 합으로 표현할 수 있음을 안다
가우스 합의 예
- 가우스 합
- \(p\) 는 홀수인 소수
\(a=1\)이고 \(\chi(t)=$\left(\frac{t}{p}\right)\) 일 때, 가우스합은 다음과 같이 주어짐
\(g_1(\chi) := \sum_{a \in \mathbb Z/p\mathbb Z} \left(\frac{a}{p}\right)e^{2 \pi i a/p}=\sum_{a \in \mathbb Z/p\mathbb Z} \left(\frac{a}{p}\right) \zeta^a}=\sum_{a=1}^{p-1} \left(\frac{a}{p}\right) \zeta^a}\)
순환 체확장에서의 응용
\(F\)가 primitive n-th root of unity \(}\zeta_n\)를 포함하는 체
\(K\)가 F의 순환체확장이면, 적당한 원소 \(a\in F\) 가 존재하여, \(K= F(a)\)와 \(a^n\in F\) 를 만족시킨다.
\(\text{Gal}(K/F)\) 가 \(\sigma\)에 의하여 생성되는 순환군이라 하자.
\(K\)에 정의된 \(F\)-선형사상 \(\tau=\sum_{i=0}^{n-1}\zeta_n^i\sigma^i\)는 \(\{\sigma^i\}\)의 선형독립성에 의하여 0이 아님을 알 수 있고, 따라서 \(\tau(b)\in K\neq 0 \) 인 \(b\in K\)가 존재한다.
\(a=\tau(b)=\sum_{i=0}^{n-1}\zeta_n^i\sigma^i(b)\) 로 정의되는 수가 중요한 역할을 한다.
\(\sigma(a)=\zeta_n^{-1}a\) 임을 다음과 같이 보일 수 있다.
\(\sigma(a)=\sigma\left(\tau(b)\right)=\sigma\left(\sum_{i=0}^{n-1}\zeta_n^i\sigma^i(b)\right)=\sum_{i=0}^{n-1}\zeta_n^i\sigma^{i+1}(b)=\zeta_n^{-1}\sum_{i=0}^{n-1}\zeta_n^{i+1}\sigma^{i+1}(b)=\zeta_n^{-1}a\)
역사
메모
- the Gauss sum is a special case of a general symmetrizing device, the Lagrange resolvent, that has built-in equivaraiance and equation-solving properties that are easier to understand in general than in the confusingly overly-specic context of Gauss sums alone. http://people.reed.edu/~jerry/361/lectures/gslag.pdf
- http://www.math.umn.edu/~garrett/m/v/kummer_eis.pdf
- http://www.encyclopediaofmath.org/index.php/Resolvent
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
수학용어번역==
- 단어사전
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 한국통계학회 통계학 용어 온라인 대조표
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
매스매티카 파일 및 계산 리소스
-
- http://www.wolframalpha.com/input/?i=
- http://functions.wolfram.com/
- NIST Digital Library of Mathematical Functions
- Abramowitz and Stegun Handbook of mathematical functions
- The On-Line Encyclopedia of Integer Sequences
- Numbers, constants and computation
- 매스매티카 파일 목록
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- The Online Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
리뷰논문, 에세이, 강의노트
관련논문
관련도서
- 가우스 합
- 가해인 다항식의 근을 찾는 과정
\(R(\theta,\chi)=\sum_{g\in G}\chi(g)g(\theta)\in K\)
- (equivariance) 임의의 \(g\in G\) 에 대하여 \(g(R)=\chi(g^{-1})R\)
- 임의의 \(g\in G\) 에 대하여 \(g(R^n)=R^n\). 따라서 \(R^n\in F\)
\(\theta=\frac{1}{n}\sum_{i=0}^{n-1}R(\theta,\chi^{i})\)
- 단어사전
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 한국통계학회 통계학 용어 온라인 대조표
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
매스매티카 파일 및 계산 리소스
- http://www.wolframalpha.com/input/?i=
- http://functions.wolfram.com/
- NIST Digital Library of Mathematical Functions
- Abramowitz and Stegun Handbook of mathematical functions
- The On-Line Encyclopedia of Integer Sequences
- Numbers, constants and computation
- 매스매티카 파일 목록
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- The Online Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
리뷰논문, 에세이, 강의노트
관련논문