"라마누잔의 세타함수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
24번째 줄: 24번째 줄:
 
<math>f(-q):=f(-q,-q^{2})=(q;q)_{\infty }</math>
 
<math>f(-q):=f(-q,-q^{2})=(q;q)_{\infty }</math>
  
<math>\frac{f(-q^{2},-q^{2})}{f(-q)}=\frac{\left(q^2;q^4\right)^2_{\infty }\left(q^4;q^4\right){}_{\infty }}{(q;q)_{\infty }}</math>
+
<math>\frac{f(-q^{2},-q^{2})}{f(-q)}=\frac{\left(q^2;q^4\right)^2_{\infty }\left(q^4;q^4\right){}_{\infty }}{(q;q)_{\infty }}=\left(-q;q^2\right){}_{\infty }</math>
  
 
 
 
 
121번째 줄: 121번째 줄:
  
 
<h5>관련도서</h5>
 
<h5>관련도서</h5>
 
*  도서내검색<br>
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/contentSearch.do?query=
 
*  도서검색<br>
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/mainSearch.do?query=
 
** http://book.daum.net/search/mainSearch.do?query=
 
 
 
 
 
 
 
 
<h5>관련기사</h5>
 
 
*  네이버 뉴스 검색 (키워드 수정)<br>
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
 
 
 
 
 
 
 
<h5>블로그</h5>
 
 
*  구글 블로그 검색<br>
 
** http://blogsearch.google.com/blogsearch?q=
 
* [http://navercast.naver.com/science/list 네이버 오늘의과학]
 
* [http://www.ams.org/mathmoments/ Mathematical Moments from the AMS]
 
* [http://betterexplained.com/ BetterExplained]
 

2012년 6월 8일 (금) 09:41 판

이 항목의 스프링노트 원문주소

 

 

개요

 \(f(a,b) = \sum_{n=-\infty}^\infty a^{n(n+1)/2} \; b^{n(n-1)/2}\)

 자코비 삼중곱

\(f(a,b) = (-a; ab)_\infty \;(-b; ab)_\infty \;(ab;ab)_\infty\)

 

 \(\phi(q):=f(q,q)=\sum _{n=-\infty }^{\infty } q^{n^2}=(-q;q^2)^{2}_{\infty} \left(q^2;q^2\right){}_{\infty }\)

\(\psi(q):=f(q,q^{3})=\sum _{n=0}^{\infty } q^{n(n+1)/2}=\frac{\left(q^2;q^2\right){}_{\infty }}{\left(q;q^2\right){}_{\infty }}\)

\(f(-q):=f(-q,-q^{2})=(q;q)_{\infty }\)

\(\frac{f(-q^{2},-q^{2})}{f(-q)}=\frac{\left(q^2;q^4\right)^2_{\infty }\left(q^4;q^4\right){}_{\infty }}{(q;q)_{\infty }}=\left(-q;q^2\right){}_{\infty }\)

 

 

메모

\(f(-q)=(q;q)_{\infty}\)

\(\phi(-q)=\frac{(q;q)_{\infty}}{(-q;q)_{\infty}}\)

\(\psi(-q)=\frac{(q^{2};q^{2})_{\infty}}{(-q;q^{2})_{\infty}}\)

\(\chi(-q)=(q;q^{2})_{\infty}\)

 

 

 

 

재미있는 사실

 

 

 

역사

 

 

 

메모

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서