"라마누잔의 정적분"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
잔글 (찾아 바꾸기 – “<h5 (.*)">” 문자열을 “==” 문자열로)
1번째 줄: 1번째 줄:
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소==
+
==이 항목의 스프링노트 원문주소==
  
 
* [[라마누잔의 정적분]]<br>
 
* [[라마누잔의 정적분]]<br>
7번째 줄: 7번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요==
+
==개요==
  
 
<math>\int_{0}^{\infty}\frac{x e^{-\sqrt{5}x}}{\cosh{x}}\,dx=\frac{1}{8}(\psi^{(1)}(\frac{1+\sqrt{5}}{4})-\psi^{(1)}(\frac{3+\sqrt{5}}{4}))</math>
 
<math>\int_{0}^{\infty}\frac{x e^{-\sqrt{5}x}}{\cosh{x}}\,dx=\frac{1}{8}(\psi^{(1)}(\frac{1+\sqrt{5}}{4})-\psi^{(1)}(\frac{3+\sqrt{5}}{4}))</math>
37번째 줄: 37번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">재미있는 사실==
+
==재미있는 사실==
  
 
*   <br>
 
*   <br>
48번째 줄: 48번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">역사==
+
==역사==
  
 
 
 
 
60번째 줄: 60번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">메모==
+
==메모==
  
 
 
 
 
66번째 줄: 66번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 항목들==
+
==관련된 항목들==
  
 
* [[트리감마 함수(trigamma function)]]<br>
 
* [[트리감마 함수(trigamma function)]]<br>
74번째 줄: 74번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역==
+
==수학용어번역==
  
 
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=
 
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=
87번째 줄: 87번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">사전 형태의 자료==
+
==사전 형태의 자료==
  
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
101번째 줄: 101번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련논문==
+
==관련논문==
  
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.jstor.org/action/doBasicSearch?Query=
111번째 줄: 111번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서==
+
==관련도서==
  
 
*  도서내검색<br>
 
*  도서내검색<br>
125번째 줄: 125번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련기사==
+
==관련기사==
  
 
*  네이버 뉴스 검색 (키워드 수정)<br>
 
*  네이버 뉴스 검색 (키워드 수정)<br>
136번째 줄: 136번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">블로그==
+
==블로그==
  
 
*  구글 블로그 검색<br>
 
*  구글 블로그 검색<br>

2012년 11월 1일 (목) 13:26 판

이 항목의 스프링노트 원문주소

 

 

개요

\(\int_{0}^{\infty}\frac{x e^{-\sqrt{5}x}}{\cosh{x}}\,dx=\frac{1}{8}(\psi^{(1)}(\frac{1+\sqrt{5}}{4})-\psi^{(1)}(\frac{3+\sqrt{5}}{4}))\)

Integrate[(x Exp[-x Sqrt[5]])/Cosh[x], {x, 0, \[Infinity]}] //  FullSimplify

[%28x+Exp[-x+Sqrt[5]%29/Cosh[x],+%7Bx,+0,+[Infinity]%7D]+ http://www.wolframalpha.com/input/?i=Integrate[(x+Exp[-x+Sqrt[5]])/Cosh[x],+{x,+0,+[Infinity]}]+]

[1,%281%2Bsqrt%285%29%29/4-polygamma[1,%283%2Bsqrt%285%29%29/4]%29/8 http://www.wolframalpha.com/input/?i=(polygamma[1,(1%2Bsqrt(5))/4]-polygamma[1,(3%2Bsqrt(5))/4])/8]

 

\(\int_{0}^{\infty}\frac{x^{2}e^{-\sqrt{3}x}}{\sinh{x}}\,dx=-\frac{1}{4}\psi^{(2)}(\frac{1+\sqrt{3}}{4})\)

Integrate[(x^2 Exp[-x Sqrt[3]])/Sinh[x], {x, 0, \[Infinity]}] //FullSimplify

[%28x%5E2+Exp[-x+Sqrt[3]%29/Sinh[x],+%7Bx,+0,+Infinity%7D] http://www.wolframalpha.com/input/?i=integrate[(x^2+Exp[-x+Sqrt[3]])/Sinh[x],+{x,+0,+Infinity}]]

[2,%281%2Bsqrt%283%29%29/2/4 http://www.wolframalpha.com/input/?i=-polygamma[2,(1%2Bsqrt(3))/2]/4]

 

 

Berndt, B. C. and Rankin, R. A. Ramanujan: Letters and Commentary. Providence, RI: Amer. Math. Soc., 1995.

 

 

재미있는 사실

 

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서

 

 

관련기사

 

 

블로그