"렘니스케이트(lemniscate) 곡선의 길이와 타원적분"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지의 이름을 lemniscate 곡선의 길이와 타원적분로 바꾸었습니다.)
1번째 줄: 1번째 줄:
 
<h5>간단한 소개</h5>
 
<h5>간단한 소개</h5>
  
[/pages/2090560/attachments/944074 lemniscate-1.png]
+
 
  
 
* 극좌표계에서 방정식 <math>r^2=\cos2\theta</math> 로 주어진 곡선을 베르누이의 Lemniscate 라 부름.
 
* 극좌표계에서 방정식 <math>r^2=\cos2\theta</math> 로 주어진 곡선을 베르누이의 Lemniscate 라 부름.
* 가우스는 이 곡선의 길이와 관련하여 다음과 같은 기록을 일기에 남김. ([http://books.google.com/books?id=QwwcmweJCDQC&pg=PA99&lpg=PA99&dq=gauss+new+analysis+lemniscate&source=web&ots=zguJpj77J9&sig=fnWL0QJ09eHIqPElVjrSoXaQW5M#PPA99,M1 Pi-unleashed, 99p])
 
 
<blockquote>
 
We have gained some very elegant details about the lemniscate, which have exceeded all expectations, and indeed using methods which open up an entirely new field. That the AGM is equal to <math>\frac{\pi }{\omega}</math> between 1 and <math>\sqrt{2}</math> we have confirmed up to the 11th decimal digit; if this is proven, then a truly new field of analysis stands before us.
 
</blockquote>
 
 
* <math>\omega</math>는 위의 lemniscate 곡선 전체 길이의 절반.
 
 
* lemniscate 의 길이는 [[타원적분(통합됨)|타원적분]]으로 표현됨.
 
* lemniscate 의 길이는 [[타원적분(통합됨)|타원적분]]으로 표현됨.
 
* <math>x=r(\theta)\cos\theta,y=r(\theta)\sin\theta</math>
 
* <math>x=r(\theta)\cos\theta,y=r(\theta)\sin\theta</math>
 
* 곡선의 둘레의 길이는 다음과 같은 적분을 통해 얻어짐
 
* 곡선의 둘레의 길이는 다음과 같은 적분을 통해 얻어짐
  
[/pages/2090560/attachments/948622 lemniscate.JPG]
+
[/pages/2090560/attachments/948622 lemniscate.JPG]<br>
 +
 
 +
<math>\frac{\Gamma(1/4)^2}{\sqrt{2\pi}}</math>
 +
 
 +
 
  
 
 
 
 
52번째 줄: 49번째 줄:
 
 
 
 
  
<h5>관련된 학부 과목과 미리 알고 있으면 좋은 것들</h5>
+
<h5>상위 주제</h5>
  
 
 
 
 
 +
 +
* [[타원적분|타원적분, 타원함수, 타원곡선]]<br>
 +
** [[란덴변환(Landen's transformation)]]<br>
 +
** [[타원곡선]]<br>
 +
** [[타원적분(통합됨)|타원적분]]<br>
 +
** [[타원함수]]<br>
 +
** [[페르마의 마지막 정리]]<br>
  
 
 
 
 
  
<h5>관련된 대학원 과목</h5>
+
 
  
 
 
 
 
 +
 +
==== 하위페이지 ====
 +
 +
* [[1964250|0 토픽용템플릿]]<br>
 +
** [[2060652|0 상위주제템플릿]]<br>
 +
 +
 
 +
 +
 
 +
 +
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">재미있는 사실</h5>
 +
 +
 
 +
 +
 
 +
 +
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">역사</h5>
 +
 +
*  1798~1799년의 시기에 가우스는 이 곡선의 길이와 관련하여 다음과 같은 기록을 일기에 남김. ([http://books.google.com/books?id=QwwcmweJCDQC&pg=PA99&lpg=PA99&dq=gauss+new+analysis+lemniscate&source=web&ots=zguJpj77J9&sig=fnWL0QJ09eHIqPElVjrSoXaQW5M#PPA99,M1 Pi-unleashed, 99p])<br>
 +
<blockquote style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; padding-top: 0px; padding-right: 0px; padding-bottom: 0px; padding-left: 38px; background-image: ; background-color: rgb(239, 239, 239); background-position: 14px 4px;">
 +
We have gained some very elegant details about the lemniscate, which have exceeded all expectations, and indeed using methods which open up an entirely new field. That the AGM is equal to <math>\frac{\pi }{\omega}</math> between 1 and <math>\sqrt{2}</math> we have confirmed up to the 11th decimal digit; if this is proven, then a truly new field of analysis stands before us.
 +
</blockquote>
 +
 +
* [[수학사연표 (역사)|수학사연표]]<br>
  
 
 
 
 
  
<h5>관련된 다른 주제들</h5>
+
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">많이 나오는 질문과 답변</h5>
  
* [[타원적분|타원적분, 타원함수, 타원곡선]]<br>
+
* 네이버 지식인<br>
** [[타원적분(통합됨)|타원적분]]
+
** http://kin.search.naver.com/search.naver?where=kin_qna&query=
* [[산술기하평균함수(AGM)와 파이값의 계산|파이값의 계산]]
+
** http://kin.search.naver.com/search.naver?where=kin_qna&query=
 +
** http://kin.search.naver.com/search.naver?where=kin_qna&query=
 +
** http://kin.search.naver.com/search.naver?where=kin_qna&query=
 +
** http://kin.search.naver.com/search.naver?where=kin_qna&query=
  
 
 
 
 
  
<h5>표준적인 도서 및 추천도서</h5>
+
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련된 고교수학 또는 대학수학</h5>
  
 
 
 
 
78번째 줄: 109번째 줄:
 
 
 
 
  
<h5>위키링크</h5>
+
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련된 다른 주제들</h5>
 +
 
 +
* [[#|AGM과 파이값의 계산]]<br>
  
 
 
 
 
 +
 +
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련도서 및 추천도서</h5>
 +
 +
*  도서내검색<br>
 +
** http://books.google.com/books?q=
 +
** http://book.daum.net/search/contentSearch.do?query=
 +
*  도서검색<br>
 +
** http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 +
** http://book.daum.net/search/mainSearch.do?query=
  
 
 
 
 
  
<h5>참고할만한 자료</h5>
+
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">참고할만한 자료</h5>
  
 
* [http://www.ias.ac.in/resonance/Apr2004/Apr2004p21-29.htm From Lintearia to Lemniscate I : physics to mathematics]
 
* [http://www.ias.ac.in/resonance/Apr2004/Apr2004p21-29.htm From Lintearia to Lemniscate I : physics to mathematics]
93번째 줄: 135번째 줄:
 
*  매쓰매티카 notebook (ver 6.0)<br>
 
*  매쓰매티카 notebook (ver 6.0)<br>
 
** [[2090560/attachments/1364930|Lemiscate,_pi_and_AGM.nb]]
 
** [[2090560/attachments/1364930|Lemiscate,_pi_and_AGM.nb]]
 +
* http://ko.wikipedia.org/wiki/
 +
* http://en.wikipedia.org/wiki/
 +
* http://www.wolframalpha.com/input/?i=Lemniscate
 +
* http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
 +
* http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
 +
* 다음백과사전 http://enc.daum.net/dic100/search.do?q=
 +
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]
 +
* [http://navercast.naver.com/science/list 네이버 오늘의과학]
 +
 +
 
 +
 +
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련기사</h5>
 +
 +
*  네이버 뉴스 검색 (키워드 수정)<br>
 +
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 +
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 +
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 +
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 +
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 +
 +
 
 +
 +
 
 +
 +
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">블로그</h5>
 +
 +
* 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
 +
* 트렌비 블로그 검색 http://www.trenb.com/search.qst?q=
 +
 +
 
 +
 +
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">이미지 검색</h5>
 +
 +
* http://commons.wikimedia.org/w/index.php?title=Special%3ASearch&search=
 +
* http://images.google.com/images?q=
 +
* [http://www.artchive.com/ http://www.artchive.com]
 +
 +
 
 +
 +
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">동영상</h5>
  
<br>
+
* http://www.youtube.com/results?search_type=&search_query=

2009년 7월 2일 (목) 04:12 판

간단한 소개


  • 극좌표계에서 방정식 \(r^2=\cos2\theta\) 로 주어진 곡선을 베르누이의 Lemniscate 라 부름.
  • lemniscate 의 길이는 타원적분으로 표현됨.
  • \(x=r(\theta)\cos\theta,y=r(\theta)\sin\theta\)
  • 곡선의 둘레의 길이는 다음과 같은 적분을 통해 얻어짐

[/pages/2090560/attachments/948622 lemniscate.JPG]

\(\frac{\Gamma(1/4)^2}{\sqrt{2\pi}}\)

 

 

원주율과의 비교
  • \( \frac{\pi}{2} = \int_{0}^{1} \frac{1}{\sqrt{1-t^2}}\ dt = 1.57079632679489...\)
    가우스가 계산한 값은  원의 둘레의 길이와 lemniscate의 둘레의 길이의 비율
    \(\frac{\omega}{2} = \int_{0}^{1} \frac{1}{\sqrt{1-t^4}}\ dt = 1.31102877714605...\)
  • \(\frac{\pi }{\omega}=1.1981402347\cdots\) 가 얻어짐
  • 한편\(AGM(a,b)\) 은 두 수 a, b의 산술기하평균을 말하는 것으로 다음과 같은 점화식의 극한으로 정의됨.
    \(a_0=a\) ,\(b_0=b\)
    \(a_{n+1}=\frac{a_n+b_n}{2}\),  \(b_{n+1}=\sqrt{a_nb_n}\)
  • 가우스의 계산으로는 \(AGM(1,\sqrt{2})\)

 

 

타원적분을 통한 증명

\(\frac{\omega}{2}=\int_0^1\frac{dx}{\sqrt{1-x^4}}=\frac{1}{\sqrt{2}}\)\(\frac{\omega}{2}=\int_0^1\frac{dx}{\sqrt{1-x^4}}=\frac{1}{\sqrt{2}}\int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1-\frac{1}{2}\sin^2\theta}}=\frac{1}{\sqrt{2}}K(\frac{1}{\sqrt2})\)

 \(K(\frac{1}{\sqrt2})=\frac{\pi}{2M(1,\frac{1}{\sqrt2})}\)

  • 두 결과를 이용하면 

\(\frac{\pi}{\omega}=\frac{2K(\frac{1}{\sqrt2}){M(1,\frac{1}{\sqrt2})}}{\sqrt{2}K(\frac{1}{\sqrt2})} = {\sqrt{2}{M(1,\frac{1}{\sqrt2})}=M(1,{\sqrt2})\)

 

\(K(k) = \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1-k^2 \sin^2\theta}}\)

 

 

상위 주제

 

 

 

 

하위페이지

 

 

재미있는 사실

 

 

역사
  • 1798~1799년의 시기에 가우스는 이 곡선의 길이와 관련하여 다음과 같은 기록을 일기에 남김. (Pi-unleashed, 99p)

We have gained some very elegant details about the lemniscate, which have exceeded all expectations, and indeed using methods which open up an entirely new field. That the AGM is equal to \(\frac{\pi }{\omega}\) between 1 and \(\sqrt{2}\) we have confirmed up to the 11th decimal digit; if this is proven, then a truly new field of analysis stands before us.

 

많이 나오는 질문과 답변

 

관련된 고교수학 또는 대학수학

 

 

관련된 다른 주제들

 

관련도서 및 추천도서

 

참고할만한 자료

 

관련기사

 

 

블로그

 

이미지 검색

 

동영상