"1부터 n까지의 최소공배수"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
6번째 줄: | 6번째 줄: | ||
<h5>개요</h5> | <h5>개요</h5> | ||
+ | |||
+ | * [[ζ(3)는 무리수이다(아페리의 정리)]] | ||
+ | |||
+ | <math>d_n = \prod_{\substack{p\le n\\ p \mathrm{\ prime}}} p^{\lfloor \log_p n \rfloor} \le \prod_{\substack{p\le n\\ p \mathrm{\ prime}}} p^ {\log_p n} = \prod_{\substack{p\le n\\ p \mathrm{\ prime}}} n = n^{\pi(n)}</math> | ||
+ | |||
+ | <math>d_n<2.99^n</math> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>이항계수</h5> | ||
+ | |||
+ | * [[이항계수와 조합]] | ||
+ | |||
+ | <math>\frac{\text{LCM}(n+1)}{n+1}\text{LCM}\left(\left( \begin{array}{c} n \\ 0 \end{array} \right),\cdots \left( \begin{array}{c} n \\ n \end{array} \right)\right)</math> | ||
81번째 줄: | 97번째 줄: | ||
<h5>관련논문</h5> | <h5>관련논문</h5> | ||
+ | |||
+ | * Hong, Shaofang. 2009. “Nair’s and Farhi’s identities involving the least common multiple of binomial coefficients are equivalent”. <em>0907.3401</em> (7월 20). [http://arxiv.org/abs/0907.3401 ]http://arxiv.org/abs/0907.3401 | ||
+ | * Farhi, Bakir, 와/과Daniel Kane. 2008. “New results on the least common multiple of consecutive integers”. <em>0808.1507</em> (8월 11). http://arxiv.org/abs/0808.1507<br> | ||
* Hanson, Denis. 1972. “On the product of the primes”. <em><full_title>Canadian Mathematical Bulletin</full_title> <full_title>Bulletin canadien de mathématiques</full_title></em> 15 (0): 33-37. doi:[http://dx.doi.org/10.4153/CMB-1972-007-7 10.4153/CMB-1972-007-7].<br> | * Hanson, Denis. 1972. “On the product of the primes”. <em><full_title>Canadian Mathematical Bulletin</full_title> <full_title>Bulletin canadien de mathématiques</full_title></em> 15 (0): 33-37. doi:[http://dx.doi.org/10.4153/CMB-1972-007-7 10.4153/CMB-1972-007-7].<br> |
2011년 6월 16일 (목) 16:29 판
이 항목의 수학노트 원문주소
개요
\(d_n = \prod_{\substack{p\le n\\ p \mathrm{\ prime}}} p^{\lfloor \log_p n \rfloor} \le \prod_{\substack{p\le n\\ p \mathrm{\ prime}}} p^ {\log_p n} = \prod_{\substack{p\le n\\ p \mathrm{\ prime}}} n = n^{\pi(n)}\)
\(d_n<2.99^n\)
이항계수
\(\frac{\text{LCM}(n+1)}{n+1}\text{LCM}\left(\left( \begin{array}{c} n \\ 0 \end{array} \right),\cdots \left( \begin{array}{c} n \\ n \end{array} \right)\right)\)
재미있는 사실
- Math Overflow http://mathoverflow.net/search?q=
- 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
역사
메모
관련된 항목들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- The Online Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
리뷰논문과 에세이
관련논문
- Hong, Shaofang. 2009. “Nair’s and Farhi’s identities involving the least common multiple of binomial coefficients are equivalent”. 0907.3401 (7월 20). [1]http://arxiv.org/abs/0907.3401
- Farhi, Bakir, 와/과Daniel Kane. 2008. “New results on the least common multiple of consecutive integers”. 0808.1507 (8월 11). http://arxiv.org/abs/0808.1507
- Hanson, Denis. 1972. “On the product of the primes”. <full_title>Canadian Mathematical Bulletin</full_title> <full_title>Bulletin canadien de mathématiques</full_title> 15 (0): 33-37. doi:10.4153/CMB-1972-007-7.
- http://www.jstor.org/action/doBasicSearch?Query=
- http://www.ams.org/mathscinet
- http://dx.doi.org/10.4153/CMB-1972-007-7
관련도서