"모든 자연수의 곱과 리만제타함수"의 두 판 사이의 차이
3번째 줄: | 3번째 줄: | ||
* 모든 자연수의 곱은 물론 발산함. | * 모든 자연수의 곱은 물론 발산함. | ||
* 이것은 다만 리만제타함수를 이용한 물리(?)적인 답변임. | * 이것은 다만 리만제타함수를 이용한 물리(?)적인 답변임. | ||
− | * <math>\zeta'(0)=-\log{\sqrt{2\pi}}</math> | + | * <math>\zeta'(0)=-\log{\sqrt{2\pi}}</math> (아래에서 증명함) |
− | * <math>\zeta(s)=\sum_{n=1}^{\infty}\frac{1}{n^s}</math> | + | * <math>\zeta(s)=\sum_{n=1}^{\infty}\frac{1}{n^s}</math> , <math>\zeta'(s)=-\sum_{n=1}^{\infty}\frac{\log n}{n^s}</math> |
+ | * 여기서 (수학적으로는 말이 안되나 형식적으로)<br><math>\zeta'(0)=-\sum_{n=1}^{\infty}\log n</math><br><math>\prod_{1}^{\infty} n =\sqrt{2\pi}</math><br> | ||
+ | * 즉 모든 자연수의 곱은 (!?) <math>\sqrt{2\pi}</math> | ||
− | + | <h5>증명에 앞서 알아야 할 사실들</h5> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | <h5> | ||
* 감마함수의 성질<br><math>\Gamma(z) \; \Gamma\left(z + \frac{1}{2}\right) = 2^{\frac{1}{2}-2z} \; \sqrt{2\pi} \; \Gamma(2z) \,\!</math><br> | * 감마함수의 성질<br><math>\Gamma(z) \; \Gamma\left(z + \frac{1}{2}\right) = 2^{\frac{1}{2}-2z} \; \sqrt{2\pi} \; \Gamma(2z) \,\!</math><br> | ||
25번째 줄: | 17번째 줄: | ||
+ | |||
+ | <h5>증명</h5> | ||
<math>\zeta(s)=\frac{\pi^{-(1-s)/2}\ \Gamma\left(\frac{1-s}{2}\right)\ \zeta(1-s)}{\pi^{-s/2}\ \Gamma\left(\frac{s}{2}\right)}=\frac{\pi^{s-1/2}\ \Gamma\left(\frac{1-s}{2}\right)\ \zeta(1-s)}{\Gamma\left(\frac{s}{2}\right)}</math> | <math>\zeta(s)=\frac{\pi^{-(1-s)/2}\ \Gamma\left(\frac{1-s}{2}\right)\ \zeta(1-s)}{\pi^{-s/2}\ \Gamma\left(\frac{s}{2}\right)}=\frac{\pi^{s-1/2}\ \Gamma\left(\frac{1-s}{2}\right)\ \zeta(1-s)}{\Gamma\left(\frac{s}{2}\right)}</math> | ||
57번째 줄: | 51번째 줄: | ||
<math>\zeta(0)=-\frac{1}{2}</math> 이므로, <math>\zeta'(0)=-\log \sqrt{2\pi}</math> | <math>\zeta(0)=-\frac{1}{2}</math> 이므로, <math>\zeta'(0)=-\log \sqrt{2\pi}</math> | ||
+ | |||
+ | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">상위 주제</h5> | ||
− | * [[파이가 아니라 2파이다?]] | + | |
+ | |||
+ | |||
+ | |||
+ | ==== 하위페이지 ==== | ||
+ | |||
+ | * [[1964250|0 토픽용템플릿]]<br> | ||
+ | ** [[2060652|0 상위주제템플릿]]<br> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">재미있는 사실</h5> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">역사</h5> | ||
+ | |||
+ | * [[수학사연표 (역사)|수학사연표]]<br> | ||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">많이 나오는 질문과 답변</h5> | ||
+ | |||
+ | * 네이버 지식인<br> | ||
+ | ** http://kin.search.naver.com/search.naver?where=kin_qna&query= | ||
+ | ** http://kin.search.naver.com/search.naver?where=kin_qna&query= | ||
+ | ** http://kin.search.naver.com/search.naver?where=kin_qna&query= | ||
+ | ** http://kin.search.naver.com/search.naver?where=kin_qna&query= | ||
+ | ** http://kin.search.naver.com/search.naver?where=kin_qna&query= | ||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련된 고교수학 또는 대학수학</h5> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련된 다른 주제들</h5> | ||
+ | |||
+ | * [[파이가 아니라 2파이다?]]<br><br> | ||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련도서 및 추천도서</h5> | ||
+ | |||
+ | * 도서내검색<br> | ||
+ | ** http://books.google.com/books?q= | ||
+ | ** http://book.daum.net/search/contentSearch.do?query= | ||
+ | * 도서검색<br> | ||
+ | ** http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords= | ||
+ | ** http://book.daum.net/search/mainSearch.do?query= | ||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">참고할만한 자료</h5> | ||
+ | |||
+ | * http://ko.wikipedia.org/wiki/ | ||
+ | * http://en.wikipedia.org/wiki/ | ||
+ | * http://www.wolframalpha.com/input/?i= | ||
+ | * http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q= | ||
+ | * http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7= | ||
+ | * 다음백과사전 http://enc.daum.net/dic100/search.do?q= | ||
+ | * [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집] | ||
+ | * [http://navercast.naver.com/science/list 네이버 오늘의과학] | ||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련기사</h5> | ||
+ | |||
+ | * 네이버 뉴스 검색 (키워드 수정)<br> | ||
+ | ** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query= | ||
+ | ** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query= | ||
+ | ** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query= | ||
+ | ** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query= | ||
+ | ** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query= | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">블로그</h5> | ||
+ | |||
+ | * 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q= | ||
+ | * 트렌비 블로그 검색 http://www.trenb.com/search.qst?q= | ||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">이미지 검색</h5> | ||
+ | |||
+ | * http://commons.wikimedia.org/w/index.php?title=Special%3ASearch&search= | ||
+ | * http://images.google.com/images?q= | ||
+ | * [http://www.artchive.com/ http://www.artchive.com] | ||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">동영상</h5> | ||
+ | |||
+ | * http://www.youtube.com/results?search_type=&search_query= | ||
+ | * <br> |
2009년 7월 4일 (토) 20:08 판
간단한 소개
- 모든 자연수의 곱은 물론 발산함.
- 이것은 다만 리만제타함수를 이용한 물리(?)적인 답변임.
- \(\zeta'(0)=-\log{\sqrt{2\pi}}\) (아래에서 증명함)
- \(\zeta(s)=\sum_{n=1}^{\infty}\frac{1}{n^s}\) , \(\zeta'(s)=-\sum_{n=1}^{\infty}\frac{\log n}{n^s}\)
- 여기서 (수학적으로는 말이 안되나 형식적으로)
\(\zeta'(0)=-\sum_{n=1}^{\infty}\log n\)
\(\prod_{1}^{\infty} n =\sqrt{2\pi}\) - 즉 모든 자연수의 곱은 (!?) \(\sqrt{2\pi}\)
증명에 앞서 알아야 할 사실들
- 감마함수의 성질
\(\Gamma(z) \; \Gamma\left(z + \frac{1}{2}\right) = 2^{\frac{1}{2}-2z} \; \sqrt{2\pi} \; \Gamma(2z) \,\!\) - 리만제타함수의 함수방정식
\(\zeta(s)=\frac{\pi^{-(1-s)/2}\ \Gamma\left(\frac{1-s}{2}\right)\ \zeta(1-s)}{\pi^{-s/2}\ \Gamma\left(\frac{s}{2}\right)}=\frac{\pi^{s-1/2}\ \Gamma\left(\frac{1-s}{2}\right)\ \zeta(1-s)}{\Gamma\left(\frac{s}{2}\right)}\) - 을 이용한다.
증명
\(\zeta(s)=\frac{\pi^{-(1-s)/2}\ \Gamma\left(\frac{1-s}{2}\right)\ \zeta(1-s)}{\pi^{-s/2}\ \Gamma\left(\frac{s}{2}\right)}=\frac{\pi^{s-1/2}\ \Gamma\left(\frac{1-s}{2}\right)\ \zeta(1-s)}{\Gamma\left(\frac{s}{2}\right)}\)
\(f(s)=s\zeta(1-s)\) 라 두자.
\(\zeta(s)=\frac{\pi^{s-1/2}\ \Gamma(\frac{1-s}{2})f(s)}{2\Gamma(\frac{s}{2}+1)}\) 의 \(s=0\) 에서의 로그미분값을 계산하면, 다음을 얻는다.
\(\frac{\zeta'(0)}{\zeta(0)}=\log\pi-\frac{1}{2}\frac{\Gamma'(\frac{1}{2})}{\Gamma(\frac{1}{2})}+\frac{f'(0)}{f(0)}-\frac{1}{2}\frac{\Gamma'(1)}{\Gamma(1)}=\log\pi-\frac{1}{2}(\psi(1)+\psi(\frac{1}{2}))+ \frac{f'(0)}{f(0)} \)
여기서 \(\psi(x) =\frac{d}{dx} \ln{\Gamma(x)}= \frac{\Gamma'(x)}{\Gamma(x)}\)
\(\frac{f'(0)}{f(0)}=-\gamma\), \(\psi(1) = -\gamma\,\!\), \(\psi\left(\frac{1}{2}\right) = -2\ln{2} - \gamma\)
\(\zeta(s)=\frac{1}{s-1}+\gamma+O((s-1)^2)\) 를 이용하면, \(s=0\) 주변에서 \(f(s)=-1+\gamma s+O(s^2)\) .
감마함수 의 Digamma 함수 부분 참조.
따라서 다음값을 얻는다.
\(\frac{\zeta'(0)}{\zeta(0)}=\log\pi-\frac{1}{2}(-\gamma-2\ln2-\gamma)-\gamma=\log 2\pi\)
\(\zeta(0)=-\frac{1}{2}\) 이므로, \(\zeta'(0)=-\log \sqrt{2\pi}\)
상위 주제
하위페이지
재미있는 사실
역사
많이 나오는 질문과 답변
- 네이버 지식인
- http://kin.search.naver.com/search.naver?where=kin_qna&query=
- http://kin.search.naver.com/search.naver?where=kin_qna&query=
- http://kin.search.naver.com/search.naver?where=kin_qna&query=
- http://kin.search.naver.com/search.naver?where=kin_qna&query=
- http://kin.search.naver.com/search.naver?where=kin_qna&query=
관련된 고교수학 또는 대학수학
관련된 다른 주제들
관련도서 및 추천도서
- 도서내검색
- 도서검색
참고할만한 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
- http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
- 다음백과사전 http://enc.daum.net/dic100/search.do?q=
- 대한수학회 수학 학술 용어집
- 네이버 오늘의과학
관련기사
- 네이버 뉴스 검색 (키워드 수정)
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
블로그
- 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
- 트렌비 블로그 검색 http://www.trenb.com/search.qst?q=
이미지 검색
- http://commons.wikimedia.org/w/index.php?title=Special%3ASearch&search=
- http://images.google.com/images?q=
- http://www.artchive.com