"무리수와 초월수"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
21번째 줄: | 21번째 줄: | ||
(정리)<br> | (정리)<br> | ||
− | <math>\alpha \ne 0</math>,<math>\alpha \ne 1</math>,<math>\beta\notin \mathbb{Q}</math> 인 복소수 <math>\alpha</math>와 <math>\beta</math> 가 대수적수이면, <math>\alpha^{\beta} =\exp\{\beta \log \alpha\}</math> 는 초월수이다. | + | <math>\alpha \ne 0</math>,<math>\alpha \ne 1</math>,<math>\beta\notin \mathbb{Q}</math> 인 복소수 <math>\alpha</math>와 <math>\beta</math> 가 대수적수이면, <math>\alpha^{\beta} =\exp\{\beta \log \alpha\}</math> 는 초월수이다. |
27번째 줄: | 27번째 줄: | ||
'''Comments''' | '''Comments''' | ||
− | |||
* In general, <math>\alpha^{\beta} = \exp\{\beta \log \alpha\}</math> is [http://en.wikipedia.org/wiki/Multivalued_function multivalued], where "log" stands for the [http://en.wikipedia.org/wiki/Complex_logarithm complex logarithm]. This accounts for the phrase "any value of" in the theorem's statement. | * In general, <math>\alpha^{\beta} = \exp\{\beta \log \alpha\}</math> is [http://en.wikipedia.org/wiki/Multivalued_function multivalued], where "log" stands for the [http://en.wikipedia.org/wiki/Complex_logarithm complex logarithm]. This accounts for the phrase "any value of" in the theorem's statement. | ||
* An equivalent formulation of the theorem is the following: if<math>\alpha</math>and <math>\gamma</math> are nonzero algebraic numbers, and we take any non-zero logarithm of<math>\alpha</math>, then<math>(\log \gamma)/(\log \alpha)</math>is either rational or transcendental. | * An equivalent formulation of the theorem is the following: if<math>\alpha</math>and <math>\gamma</math> are nonzero algebraic numbers, and we take any non-zero logarithm of<math>\alpha</math>, then<math>(\log \gamma)/(\log \alpha)</math>is either rational or transcendental. | ||
102번째 줄: | 101번째 줄: | ||
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서 및 추천도서</h5> | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서 및 추천도서</h5> | ||
+ | * <br>[http://www.amazon.com/Transcendental-Number-Cambridge-Mathematical-Library/dp/052139791X Transcendental Number Theory]<br> | ||
+ | ** Alan Baker<br> | ||
+ | ** Cambridge University Press<br> | ||
+ | * [http://www.amazon.com/Making-Transcendence-Transparent-intuitive-transcendental/dp/0387214445/ref=pd_sim_b_7 Making Transcendence Transparent: An intuitive approach to classical transcendental number theory]<br> | ||
+ | ** Edward B. Burger, Robert Tubbs<br> | ||
+ | ** Springer<br> | ||
* 도서내검색<br> | * 도서내검색<br> | ||
** http://books.google.com/books?q= | ** http://books.google.com/books?q= |
2009년 6월 26일 (금) 12:29 판
간단한 소개
- 복소수 중에서 어떠한 유리수 계수방정식도 만족시킬 수 없는 수를 초월수라 함
- 유리수 계수방정식은 적당한 정수를 곱하여 다음과 같은 형태의 정수계수방정식으로 표현할 수도 있음.
\(a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \cdots + a_1 x + a_0 = 0, a_i \in \mathbb{Z}\) - 복소수 중에서 어떠한 정수계수방정식도 만족시킬 수 없는 수를 초월수라 해도 무방
- 유리수 계수방정식은 적당한 정수를 곱하여 다음과 같은 형태의 정수계수방정식으로 표현할 수도 있음.
- 대수적수론 에 비해 훨씬 어렵고, 체계적인 이론이 확립되어 있지 않음.
린데만-바이어슈트라스 정리
겔퐁드-슈나이더 정리
(정리)
\(\alpha \ne 0\),\(\alpha \ne 1\),\(\beta\notin \mathbb{Q}\) 인 복소수 \(\alpha\)와 \(\beta\) 가 대수적수이면, \(\alpha^{\beta} =\exp\{\beta \log \alpha\}\) 는 초월수이다.
Comments
- In general, \(\alpha^{\beta} = \exp\{\beta \log \alpha\}\) is multivalued, where "log" stands for the complex logarithm. This accounts for the phrase "any value of" in the theorem's statement.
- An equivalent formulation of the theorem is the following: if\(\alpha\)and \(\gamma\) are nonzero algebraic numbers, and we take any non-zero logarithm of\(\alpha\), then\((\log \gamma)/(\log \alpha)\)is either rational or transcendental.
- If the restriction that\(\beta\)be algebraic is removed, the statement does not remain true in general (choose \(\alpha=3\) and \(\beta=\log 2/\log 3\), which is transcendental, then \(\alpha^{\beta}=2\) is algebraic). A characterization of the values for\(\alpha\) and \(\beta\)which yield a transcendental \(\alpha^{\beta}\) is not known.
(wikipedia 의 Gelfond–Schneider theorem 페이지에서)
베이커의 정리
상위 주제
하위페이지
재미있는 사실
많이 나오는 질문과 답변
- 네이버 지식인
- http://kin.search.naver.com/search.naver?where=kin_qna&query=초월수
- http://kin.search.naver.com/search.naver?where=kin_qna&query=
- http://kin.search.naver.com/search.naver?where=kin_qna&query=
- http://kin.search.naver.com/search.naver?where=kin_qna&query=
- http://kin.search.naver.com/search.naver?where=kin_qna&query=
관련된 고교수학 또는 대학수학
관련된 다른 주제들
- 파이는 초월수이다
- 자연상수 e는 초월수이다
- 작도문제
- 가우스와 정17각형의 작도
- Gelfond-Schneider theorem
- Baker's theorem
관련도서 및 추천도서
-
Transcendental Number Theory
- Alan Baker
- Cambridge University Press
- Alan Baker
- Making Transcendence Transparent: An intuitive approach to classical transcendental number theory
- Edward B. Burger, Robert Tubbs
- Springer
- Edward B. Burger, Robert Tubbs
- 도서내검색
- 도서검색
참고할만한 자료
-
- Transcendental number theory
- Michael Filaseta
- Lecture notes
- Lindemann's Theorem
- The Gelfond-Schneider Theorem and Some Related Results
- 무리수이야기
- 정경훈
- 네이버 오늘의 과학, 2009-6-9
- http://ko.wikipedia.org/wiki/초월수
- http://en.wikipedia.org/wiki/Gelfond-Schneider_theorem
- http://www.wolframalpha.com/input/?i=
- http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
- http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
- 다음백과사전 http://enc.daum.net/dic100/search.do?q=
- 대한수학회 수학 학술 용어집
관련기사
- 네이버 뉴스 검색 (키워드 수정)
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
블로그
- 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
- 트렌비 블로그 검색 http://www.trenb.com/search.qst?q=
이미지 검색
- http://commons.wikimedia.org/w/index.php?title=Special%3ASearch&search=
- http://images.google.com/images?q=
- http://www.artchive.com