소수의 무한성
이 항목의 스프링노트 원문주소
개요
유클리드의 증명
(정리) 소수는 무한히 많다
(증명)
소수의 개수가 유한하다고 가정하고, \(p_1, p_2, \cdots ,p_r\) 가 모든 소수의 목록이라 하자.
자연수 \(N=p_1p_2\cdots p_r+1\) 을 정의하자.
\(N\)은 각 소수 \(p_i\)로 나누어 나머지가 1이므로, 1과 자신 이외의 약수를 가지지 않는다. 따라서 \(N\)은 소수이다.
한편 N은 \(p_1, p_2, \cdots ,p_r\)와 같지 않으므로, 기존의 목록에 있지 않은 새로운 소수가 된다. 모순. ■
오일러의 해석학적 증명
\(\sum_{n\geq 1}\frac{1}{n^s}= \left(1 + \frac{1}{2^s} + \frac{1}{4^s} + \cdots \right) \left(1 + \frac{1}{3^s} + \frac{1}{9^s} + \cdots \right) \cdots \left(1 + \frac{1}{p^s} + \frac{1}{p^{2s}} + \cdots \right) \cdots\)
\(\zeta(s) =\prod_{p \text{:prime}} \frac{1}{1-p^{-s}}\)
\(\log \zeta(s) = \log \prod_{p \text{:prime}} \frac{1}{1-p^{-s}} =\sum_{p \text{:prime}} -\log (1-p^{-s})\)
\(\log(1+x) \approx x\)
\(\log \zeta(s) = \sum_{p \text{:prime}} -\log (1-p^{-s})\approx \sum_{p \text{:prime}} \ p^{-s}=\sum_{p \text{:prime}} \frac{1}{p^s}\)
\(\sum_{p \text{:prime}} \frac{1}{p}=\infty\)
재미있는 사실
- Math Overflow http://mathoverflow.net/search?q=
- 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
역사
메모
관련된 항목들
수학용어번역
- 단어사전 http://www.google.com/dictionary?langpair=en%7Cko&q=
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
관련도서
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)