조화 형식(harmonic forms)

수학노트
Pythagoras0 (토론 | 기여)님의 2012년 11월 2일 (금) 07:40 판 (찾아 바꾸기 – “==관련논문== * http://www.jstor.org/action/doBasicSearch?Query= * http://www.ams.org/mathscinet * http://dx.doi.org/” 문자열을 “” 문자열로)
둘러보기로 가기 검색하러 가기

이 항목의 수학노트 원문주소

 

 

개요

 

 

기호

  • M : n 차원 유향 컴팩트 리만 다양체
  • \(*\) : Hodge * 연산자
    • k-form 을 (n-k)-form 으로 보냄
  • codifferential : k-form 을
    • \(\delta=(-1)^{nk+n+1}*d*\)
  • 라플라시안
    • \(\Delta=d\delta+\delta d\)
    • k-form 을 k-form 으로 보냄
    • elliptic operator of the second order
  • 조화형식
    • 미분방정식 \(\Delta \alpha=0\)의 해
    • 유한차원벡터공간 \(\mathcal H_\Delta^k(M)=\{\alpha\in\Omega^k(M)\mid\Delta\alpha=0\}\) 을 이룸

 

 

Hodge 정리

  • 동형사상 \(\varphi:\mathcal H_\Delta^k(M)\rightarrow H^k(M)\)이 존재한다

 

 

인덱스 정리

  • \(\chi(M)=d_e-d_o\)
    • \(d_e\) : 짝수 degree를 갖는 조화형식의 차원
    • \(d_o\) : 홀수 degree를 갖는 조화형식의 차원
  • Atiyah-Singer 인덱스 정리
  • Hodge signature theorem
  • Hirzebruch signature theorem
  • 복소다양체에 대한 Riemann-Roch theorem
     

 

역사

 

 

 

메모

 

 

 

관련된 항목들

 

 

수학용어번역

 

 

매스매티카 파일 및 계산 리소스

 

 

사전 형태의 자료

 

 

리뷰논문, 에세이, 강의노트