헤세 판정법

수학노트
http://bomber0.myid.net/ (토론)님의 2010년 10월 7일 (목) 16:48 판
둘러보기로 가기 검색하러 가기
이 항목의 스프링노트 원문주소

 

 

개요

\(H(f) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1\,\partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1\,\partial x_n} \\ \\ \frac{\partial^2 f}{\partial x_2\,\partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2\,\partial x_n} \\ \\ \vdots & \vdots & \ddots & \vdots \\ \\ \frac{\partial^2 f}{\partial x_n\,\partial x_1} & \frac{\partial^2 f}{\partial x_n\,\partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}\)

 

재미있는 사실

 

 

 

역사

 

 

 

메모

 

 

관련된 항목들
  •  

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서

 

 

관련기사

 

 

링크