황금비
목차
- 정오각형과 황금비
- 황금비와 피보나치 수열
- 황금비와 정이십면체
- 연분수
- 유리수 근사와 황금비
- 로저스-라마누잔 연분수
- Dilogarithm
- 재미있는 사실
- 관련된 단원
- 많이 나오는 질문
- 관련된 고교수학 또는 대학수학
- 관련된 다른 주제들
- 관련도서 및 추천도서
- 참고할만한 자료
- 동영상
- 관련기사
황금비
- \(\frac{1+\sqrt5}{2}\)
- 두 수 (또는 길이) \(a,b\)가 \(a+b:a=a:b\) 를 만족시키면 황금비를 이룬다고 말함
[[Media:|]]
정오각형과 황금비#
- 정오각형의 한 변의 길이와 대각선의 길이의 비율은 황금비가 된다.
[/pages/3002548/attachments/1344232 180px-Ptolemy_Pentagon.svg.png]
\({b \over a}={{(1+\sqrt{5})}\over 2}\)
황금비와 피보나치 수열#
[/pages/2252978/attachments/1347082 goldenrectangle.jpg]
황금비와 정이십면체#
[[|Golden rectangles in an icosahedron]]
- 황금사각형 세 개가 이루는 꼭지점이 정이십면체의 꼭지점이 된다
연분수#
\(\frac{1+\sqrt5}{2}=1 + \cfrac{1}{1 + \cfrac{1}{1 + \cfrac{1}{1 + \ddots}}}\)
유리수 근사와 황금비#
무리수 \(\alpha\) 에 대하여,
\(|\frac{p}{q}-\alpha|<\frac{1}{\sqrt{5}{q^2}}\)
는 무한히 많은 p,q 에 의하여 만족된다. 하지만 여기서 \(\sqrt{5}\) 는 더 큰 수로 대체될 수 없다.
- 연분수 항목을 참조
로저스-라마누잔 연분수#
\(\cfrac{1}{1 + \cfrac{e^{-2\pi}}{1 + \cfrac{e^{-4\pi}}{1+\dots}}} = \left({\sqrt{5+\sqrt{5}\over 2}-{\sqrt{5}+1\over 2}}\right)e^{2\pi/5} = e^{2\pi/5}\left({\sqrt{\varphi\sqrt{5}}-\varphi}\right) = 0.9981360\dots\)
Dilogarithm#
\(\mbox{Li}_{2}(\frac{3-\sqrt{5}}{2})=\frac{\pi^2}{15}-\log^2(\frac{1+\sqrt{5}}{2})\)
\(\mbox{Li}_{2}(\frac{-1+\sqrt{5}}{2})=\frac{\pi^2}{10}-\log^2(\frac{1+\sqrt{5}}{2})\)
\(\mbox{Li}_{2}(\frac{1-\sqrt{5}}{2})=-\frac{\pi^2}{15}+\frac{1}{2}\log^2(\frac{1+\sqrt{5}}{2})\)
\(\mbox{Li}_{2}(\frac{-1-\sqrt{5}}{2})=-\frac{\pi^2}{10}+\frac{1}{2}\log^2(\frac{1+\sqrt{5}}{2})\)
- Dilogarithm 항목을 참조
재미있는 사실#
관련된 단원#
많이 나오는 질문#
관련된 고교수학 또는 대학수학#
관련된 다른 주제들#
관련도서 및 추천도서#
참고할만한 자료#
- This Week's Finds in Mathematical Physics (Week 203)
- John Baez
- Misconceptions about the Golden Ratio
- George Markowsky
- The College Mathematics Journal, Vol. 23, No. 1 (Jan., 1992), pp. 2-19
- http://ko.wikipedia.org/wiki/황금비
- http://en.wikipedia.org/wiki/golden_ratio
- 다음백과사전 http://enc.daum.net/dic100/search.do?q=
동영상#
관련기사#
네이버 뉴스 검색 (키워드 수정)