자연상수 e는 초월수이다

수학노트
Pythagoras0 (토론 | 기여)님의 2020년 12월 28일 (월) 02:52 판
(차이) ← 이전 판 | 최신판 (차이) | 다음 판 → (차이)
둘러보기로 가기 검색하러 가기

증명

린데만-바이어슈트라스 정리를 사용하여 증명한다.


일반적으로 0이 아닌 대수적수 \(\alpha\) 에 대하여, \(e^{\alpha}\) 는 초월수임을 증명하자.

\(\alpha\)가 0이 아닌 대수적수라고 하면면 린데만-바이어슈트라스 정리 에 의해 \(\{e^0, e^{\alpha}\}\) 는 대수적수체위에서 선형독립이다. 따라서 \(e^{\alpha}\) 는 초월수이다.

\(\alpha=1\) 인 경우로부터, \(e\)가 초월수임을 얻는다.



관련된 항목들