Cyclotomic numbers and Chebyshev polynomials
imported>Pythagoras0님의 2013년 12월 1일 (일) 13:44 판 (→articles)
introduction
- borrowed from Andrews-Gordon identity
- quantum dimension and thier recurrence relation
\[d_i=\frac{\sin \frac{(i+1)\pi}{k+2}}{\sin \frac{\pi}{k+2}}\] satisfies
\[d_i^2=1+d_{i-1}d_{i+1}\] where \(d_0=1\), \(d_k=1\)
- (*choose k for c (2,k+2) minimal model*)k := 11
d[k_, i_] := Sin[(i + 1) Pi/(k + 2)]/Sin[Pi/(k + 2)]
Table[{i, d[k, i]}, {i, 1, k}] // TableForm
Table[{i, N[(d[k, i])^2 - (1 + d[k, i - 1]*d[k, i + 1]), 10]}, {i, 1,
k}] // TableForm - Plot[d[k, i], {i, 0, 2 k}]
diagonals of polygon
Clear[r]
r[i_] := Sin[((i + 1) Pi)/7]/Sin[Pi/7]
Table[N[r[i], 10], {i, 0, 5}]
Table[N[r[i]^2 - (1 + r[i - 1] r[i + 1]), 10], {i, 1, 4}]
chebyshev polynomials
- 체비셰프 다항식
- http://mathworld.wolfram.com/ChebyshevPolynomialoftheSecondKind.html
also obey the interesting determinant identity
history
articles
- Golden Fields: A Case for the Heptagon
- Peter Steinbach, Mathematics Magazine Vol. 70, No. 1 (Feb., 1997), pp. 22-31