Electromagnetics

수학노트
http://bomber0.myid.net/ (토론)님의 2012년 6월 12일 (화) 12:34 판
둘러보기로 가기 검색하러 가기
Lorentz force
  • almost all forces in mechanics are conservative forces, those that are functions only of positions, and certainly not functions of velocities
  • Lorentz force is a rare example of velocity dependent force

 

 

polarization of light
  • has two possibilites
    • what does this mean?

 

 

notations
  • charge density \({\rho} \) (for point charge, density will be a Dirac delta function)

 

electromagnetic field (four vector potential)

 

conserved four-current
  • this is necessary for Maxwell equations with sources
  • describes the distribution and motion of charged particles
  • charge density \({\rho} \) (for point charge, density will be a Dirac delta function)
  • current density \(\mathbf{J}=(J_x,J_y,J_z)\)
  • charge density and current density
    \(J^a = \left(c \rho, \mathbf{J} \right)\)
  • four vector is called a conserved current if \(\partial_{a}J^{a}=0\)
  • in covariant formulation, this is a 3-form
    \(J=\rho dx\wedge dy \wedge dz - J_{z}dx\wedge dy \wedge dt -J_{x}dy\wedge dz\wedge dt-J_{y}dz\wedge dx\wedge dt\)

 

 

covariant formulation using differential form

 

 

 

Lagrangian formulation
  • Lagrangian for a charged particle in an electromagnetic field
    \(L=T-V\)
    \(L(q,\dot{q})=m||\dot{q}||-e\phi+eA_{i}\dot{q}^{i}\)
  • action
    \(S=-\frac{1}{4}\int F^{\alpha\beta}F_{\alpha\beta}\,d^{4}x\)
  • Euler-Lagrange equations
    \(p_{i}=\frac{\partial{L}}{\partial{\dot{q}^{i}}}=m\frac{\dot{q}_{i}}{||\dot{q}_{i}||}+eA_{i}=mv_{i}+eA_{i}\)
    \(F_{i}=\frac{\partial{L}}{\partial{{q}^{i}}}=\frac{\partial}{\partial{{q}^{i}}}(eA_{j}\dot{q}^{j})=e\frac{\partial{A_{j}}}{\partial{q}^{i}}\dot{q}^{j}}}\)
  • equation of motion
    \(\dot{p}=F\) Therefore we get
    \(m\frac{dv_{i}}{dt}=eF_{ij}\dot{q}^{j}\). This is what we call the Lorentz force law.
  • force on a particle is same as \(e\mathbf{E}+e\mathbf{v}\times \mathbf{B}\)

 

 

Hamiltonian formulation
  • total energy of a charge particle in an electromagnetic field
    \(E=\frac{1}{2m}(p_j-eA_{j})(p_j-eA_j)+q\phi\)
  • replace the momentum with the canonical momentum
    • similar to covariant derivative

 

 

force on a particle
  • force on a particle is same as \(e\mathbf{E}+e\mathbf{v}\times \mathbf{B}\)

 

 

 

gauge transformation
  • For any scalar field \(\Lambda(x,y,z,t)\), the following transformation does not change any physical quantity
    \(\mathbf{A} \to \mathbf{A} +\del \Lambda\)
    \(\phi\to \phi-\frac{\partial\Lambda}{\partial t}\)
  • unchanged quantities
    \(\mathbf{B}=\nabla \times \mathbf{A}\)
    \(\mathbf{E}=-\frac{\partial\mathbf{A}}{\partial t} - \nabla \phi \)
  • the electromagnetic potential is a connection on a U(1)-bundle on spacetime whose curvature is the electromagnetic field
  • the electromagnetism is a gauge field theory with structure group U(1)

 

 

 

 

메모

 

 

related items

 

encyclopedia

 

 

books

ELECTROMAGNETIC THEORY AND COMPUTATION