Self-avoiding walks (SAW)

수학노트
imported>Pythagoras0님의 2015년 1월 22일 (목) 06:29 판
둘러보기로 가기 검색하러 가기

introduction

  • choose edge in a given lattice
  • not allowed to retrace your path
  • how many SAWs of length $n$ are there?
conjecture

Let $c_n$ be the number of SAWs from a fixed starting point on the honeycomb lattice. Then $$ c_n \sim An^{\gamma-1}\mu^n $$ as $n\to \infty$, where $\mu=\sqrt{2+\sqrt{2}}$ and $\gamma$ is conjectured to be $43/32$

  • the fact $\mu=\sqrt{2+\sqrt{2}}$ was conjectured by Nieuhuis in 1982 and proved in 2012 by Smirnov
  • the critical exponent $\gamma$ is universal 
  • proof uses discrete holomorphic observables

 

related items

 

computational resource

 


expositions

  • Slade, Gordon. “Self-Avoiding Walks.” The Mathematical Intelligencer 16, no. 1 (December 1, 1994): 29–35. doi:10.1007/BF03026612.

 

articles

  • Duminil-Copin, Hugo, and Stanislav Smirnov. “The Connective Constant of the Honeycomb Lattice Equals $\sqrt{2+\sqrt2}$.” arXiv:1007.0575 [math-Ph], July 4, 2010. http://arxiv.org/abs/1007.0575.
  • Lawler, Gregory F., Oded Schramm, and Wendelin Werner. “On the Scaling Limit of Planar Self-Avoiding Walk.” arXiv:math/0204277, April 23, 2002. http://arxiv.org/abs/math/0204277.


encyclopedia