Gromov-Witten invariants of compact Calabi-Yau orbifolds
imported>Pythagoras0님의 2016년 5월 9일 (월) 19:04 판 (section 'articles' updated)
Katz-Klemm-Vafa conjecture for K3 surfaces
- KKV conjecture expressing Gromov-Witten invariants of K3 surfaces in terms of modular forms
- recent proof gives the first non-toric geometry in dimension greater than 1 where Gromov-Witten theory is exactly solved in all genera
articles
- Bohan Fang, Chiu-Chu Melissa Liu, Zhengyu Zong, On the Remodeling Conjecture for Toric Calabi-Yau 3-Orbifolds, arXiv:1604.07123 [math.AG], April 25 2016, http://arxiv.org/abs/1604.07123
- R. Pandharipande, R. P. Thomas, The Katz-Klemm-Vafa conjecture for K3 surfaces, arXiv:1404.6698 [math.AG], April 27 2014, http://arxiv.org/abs/1404.6698
- Zhengyu Zong, Equivariant Gromov-Witten Theory of GKM Orbifolds, arXiv:1604.07270 [math.AG], April 25 2016, http://arxiv.org/abs/1604.07270
- Schaug, Andrew. ‘The Gromov-Witten Theory of Borcea-Voisin Orbifolds and Its Analytic Continuations’. arXiv:1506.07226 [math], 23 June 2015. http://arxiv.org/abs/1506.07226.
- Shen, Yefeng, and Jie Zhou. ‘Ramanujan Identities and Quasi-Modularity in Gromov-Witten Theory’. arXiv:1411.2078 [hep-Th], 7 November 2014. http://arxiv.org/abs/1411.2078.
expositions
- R. Pandharipande, R. P. Thomas, Notes on the proof of the KKV conjecture, arXiv:1411.0896 [math.AG], November 04 2014, http://arxiv.org/abs/1411.0896