Path integral and moduli space of Riemann surfaces
http://bomber0.myid.net/ (토론)님의 2011년 10월 18일 (화) 07:27 판
\(Z=\sum_{g=0}^{\infty} g_{s}^{-\chi(\Sigma_{g})}Z_{g}=\frac{1}{g_{s}^2}Z_{0}+g_{s}^{0}Z_{1}+g_{s}^2Z_{2}+\cdtos\)
classical
\(\frac{1}{g_{s}^2}Z_{0}\)
other terms : loo (=quantum ) corrections
Scattering amplitude
\(Z(V_1,\cdots, V_{s},V_{s+1},\cdots, V_{s+p})=\sum_{g=0}^{\infty} g_{s}^{-\chi(\Sigma_{g})}Z_{g}(V_1,\cdots, V_{s},V_{s+1},\cdots, V_{s+p})\)
Polchinski I,5