Alternating sign matrix theorem
http://bomber0.myid.net/ (토론)님의 2010년 12월 1일 (수) 07:12 판
introduction
descending plane partitions and alternating sign matrix
1+1 dimensional Lorentzian quantum gravity
exists quantities \phi such that if \phi(g,a)=\phi'(g',a') then [T(a,g),T(a',g')]=0
\phi(g,a)=\frac{1-g^2(1-a^2)}{ag}=q+q^{-1}
DPP to l
lattice paths (lattice fermions)
history
books
- Exactly Solved Models in Statistical mechanics
- R. J. Baxter
- Proofs and Confirmations
- Bressoud, David M.,
- MAA Spectrum, Mathematical Associations of America, Washington, D.C., 1999.
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
encyclopedia
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Plane_partition
- http://en.wikipedia.org/wiki/alternating_sign_matrix
- http://en.wikipedia.org/wiki/Six-vertex_model
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
question and answers(Math Overflow)
- http://mathoverflow.net/search?q=
- http://mathoverflow.net/search?q=
- http://mathoverflow.net/search?q=
blogs
- 구글 블로그 검색
articles
- http://www.math.lsa.umich.edu/~lserrano/asm.pdf
- How the alternating sign matrix conjecture was solved,
- Bressoud, David M. and Propp, James,
- Notices of the American Mathematical Society, 46 (1999), 637-646.
- Another proof of the alternating sign matrix conjecture
- G Kuperberg, International Mathematics Research Notes (1996), 139-150.
- Proof of the alternating sign matrix conjecture
- Zeilberger, Doron
- Electronic Journal of Combinatorics 3 (1996), R13.
- Exact Solution of the Six-Vertex Model with Domain Wall Boundary Conditions. Disordered Phase
- Bleher, Pavel M.; Fokin, Vladimir V.
- 논문정리
- http://www.ams.org/mathscinet/search/publications.html?pg4=ALLF&s4=
- http://www.ams.org/mathscinet
- http://www.zentralblatt-math.org/zmath/en/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
- http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
- http://dx.doi.org/