Bailey lattice
http://bomber0.myid.net/ (토론)님의 2010년 10월 9일 (토) 04:28 판
introduction
Let \(\{\alpha_r\}, \{\beta_r\}\) be a Bailey pair relative to a and set
\(\alpha_0'=0\), \(\alpha_n'=(1-a)a^nq^{n^2-n}(\frac{\alpha_n}{1-aq^{2n}}-\frac{aq^{2n-2}\alpha_{n-1}}{1-aq^{2n-2}})\)\(\beta_n'=\sum_{r=0}^{n}\frac{a^rq^{r^2-r}}{(q)_{n-r}}\beta_{r}\)
Then \(\{\alpha_r'\}, \{\beta_r'\}\) is a Bailey pair relative to \(aq^{-1}\)
corollary
apply
history
encyclopedia
- http://en.wikipedia.org/wiki/
 - http://www.scholarpedia.org/
 - Princeton companion to mathematics(Companion_to_Mathematics.pdf)
 
books
- 2010년 books and articles
 - http://gigapedia.info/1/
 - http://gigapedia.info/1/
 - http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
[[4909919|]]
articles
- A Bailey Lattice
- Jeremy Lovejoy, Proceedings of the American Mathematical Society, Vol. 132, No. 5 (May, 2004), pp. 1507-1516
 
 
- The Bailey lattice
- David Bressoud, an introduction, pp. 57--67 in Ramanujan Revisited. G. E. Andrews et al. eds., Academic Press, 1988.
 
 - David Bressoud, an introduction, pp. 57--67 in Ramanujan Revisited. G. E. Andrews et al. eds., Academic Press, 1988.
 - The Bailey Lattice
- A. Agarwal, G.E. Andrews, and D. Bressoud,  J. Indian Math. Soc. 51 (1987), 57-73.
 
 - A. Agarwal, G.E. Andrews, and D. Bressoud,  J. Indian Math. Soc. 51 (1987), 57-73.
 - http://www.ams.org/mathscinet
 - [1]http://www.zentralblatt-math.org/zmath/en/
 - http://arxiv.org/
 - http://www.pdf-search.org/line-height: 2em;">
 - http://pythagoras0.springnote.com/
 - http://math.berkeley.edu/~reb/papers/index.html
 - http://dx.doi.org/
 
question and answers(Math Overflow)
blogs
- 구글 블로그 검색
 - http://ncatlab.org/nlab/show/HomePage
 
experts on the field