Beilinson conjectures

수학노트
imported>Pythagoras0님의 2013년 12월 26일 (목) 11:25 판
둘러보기로 가기 검색하러 가기

introduction

  • generalizations of
  1. the Lichtenbaum conjectures for K-groups of number rings
  2. the Hodge conjecture
  3. the Tate conjecture about algebraic cycles
  4. the Birch and Swinnerton-Dyer conjecture about elliptic curves
  5. Bloch's conjecture about K2 of elliptic curves
  • the Beĭlinson conjectures describe the leading coefficients of L-series of varieties over number fields up to rational factors in terms of generalized regulators


related items


question and answers(Math Overflow)


expositions

  • Nekovár, Jan. "Beilinson’s conjectures." U. Jannsen, SL Kleiman, J.–P. Serre,“Motives”, Proceedings of the Research Conference on Motives held July. 1994. http://www.math.jussieu.fr/~nekovar/pu/mot.pdf
  • Scholl, A. J. 1992. “Modular Forms and Algebraic $K$-Theory.” Astérisque (209): 12, 85–97.
  • Deninger, Christopher, and Anthony J. Scholl. 1991. “The Beilinson Conjectures.” In $L$-Functions and Arithmetic (Durham, 1989), 153:173–209. London Math. Soc. Lecture Note Ser. Cambridge: Cambridge Univ. Press. http://www.ams.org/mathscinet-getitem?mr=1110393.


articles

  • Brunault, François. 2006. “Version Explicite Du Théorème de Beilinson Pour La Courbe Modulaire.” Comptes Rendus Mathematique 343 (8) (October 15): 505–510. doi:10.1016/j.crma.2006.09.014.
  • Beilinson, A. A. 1987. “Height Pairing between Algebraic Cycles.” In $K$-Theory, Arithmetic and Geometry (Moscow, 1984–1986), 1289:1–25. Lecture Notes in Math. Berlin: Springer. http://www.ams.org/mathscinet-getitem?mr=923131.
  • Beilinson, A. A. 1984. “Higher Regulators and Values of $L$-Functions.” In Current Problems in Mathematics, Vol. 24, 181–238. Itogi Nauki I Tekhniki. Moscow: Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform. http://www.ams.org/mathscinet-getitem?mr=760999. http://dx.doi.org/10.1007/BF02105861