Monoidal categorifications of cluster algebras
imported>Pythagoras0님의 2014년 12월 29일 (월) 20:20 판 (→articles)
introduction
- replace cluster variables by modules of quantum groups
- motivation comes from Positivity conjecture on cluster algebras
main results
- Hernandez-Leclerc and Nakajima categorified cluster algebras of finite type using Kirillov-Reshetikhin (KR) modules of Quantum affine algebra
monoidal categorification
- $A$ : cluster algebra
- $M$ : monoidal categorify
- $M$ is a monoidal categorification of $A$ if the Grothendieck ring $K_0(M)$ of $M$ is isomorphic to $A$ which induces bijection between
- cluster monomials of $A$
- the classes of real simple objects of $M$ where $V$ is real if $V\otimes V$ is simple
- cluster variables of $A$ (including coefficients) corresponds to classes of real prime simple objects
proposition
- Suppose that $A$ has a monoidal categorification $M$ and also that each object $B$ in $M$ has unique finite composition series, (i.e., find simple subobject $A_1$, then simple subobject of $A_2$ of $B/A_1$, etc ... composition series if colleciton of all $A$'s)
- Then
- each cluster variable of a has positivie Laurent expansion with respect to any cluster
- cluster monomials are linearly independent
history
- Additive categorifications of cluster algebras
- categorification of quantum groups
- Coordinate ring of maximal unipotent subgroup
computational resource
expositions
- collection of notes http://mathserver.neu.edu/~sstella/seminars/cac-2011.shtml
- Leclerc, 2012, Cluster algebras and Lie theory, http://www.emis.de/journals/SLC/wpapers/s69vortrag/leclerc.pdf
- Leclerc, Bernard. 2011. “Quantum loop algebras, quiver varieties, and cluster algebras”. 1102.1076 (2월 5). http://arxiv.org/abs/1102.1076.
- Keller, Bernhard. 2008. “Cluster algebras, quiver representations and triangulated categories”. 0807.1960 (7월 12). http://arxiv.org/abs/0807.1960.
- Cluster algebras and quiver representations, Keller, Bernhard, 2006
- Total positivity, cluster algebras and categorification
articles
- Kang, Seok-Jin, Masaki Kashiwara, Myungho Kim, and Se-jin Oh. “Monoidal Categorification of Cluster Algebras.” arXiv:1412.8106 [math], December 27, 2014. http://arxiv.org/abs/1412.8106.
- Ma, Hai-Tao, Yan-Min Yang, and Zhu-Jun Zheng. “Quantum Cluster Algebra Structure on the Finite Dimensional Representations of $U_q(\widehat{sl_{2}})$.” arXiv:1406.2452 [math-Ph], June 10, 2014. http://arxiv.org/abs/1406.2452.
- Yang, Yan-Min, and Zhu-Jun Zheng. 2014. “Cluster Algebra Structure on the Finite Dimensional Representations of $U_q(\widehat{A_{3}})$ for $l$=2.” arXiv:1403.5124 [math-Ph], March. http://arxiv.org/abs/1403.5124.
- David Hernandez, Bernard Leclerc , Monoidal categorifications of cluster algebras of type A and D http://arxiv.org/abs/1207.3401
- Nakajima, Hiraku. 2011. “Quiver varieties and cluster algebras”. Kyoto Journal of Mathematics 51 (1): 71-126. doi:10.1215/0023608X-2010-021.