Motive
geometry roughly= cohomology
example
circle S^1
Betti cohomolgy (singular cohomology)
$H^0(S^1,Z)=Z$
$H^1(S^1,Z)=Z$
$\mathbb{G}_m = \mathbb{C}^{x} = \mathbb{C}/{0}$same homotopy class as$S^1$
Betti cohomology is same
$H^0(\mathbb{G}_m,Z)=Z$
$H^1(\mathbb{G}_m,\mathbb{Z})=Z$, this is dual to$H_1(\mathbb{G}_m,Z)$we can call the generator as$\gamma_0^{\vee}$where$\gamma_0$is the homology generator.
de Rham cohomology
$H^0_{dR}(\mathbb{G}_m)=\mathbb{C}$
$H^1_{dR}(\mathbb{G}_m)=\mathbb{C}\frac{dz}{z}$
De Rham isomorphism
$H^1(\mathbb{G}_m,Z) \times H^1_{dR}(\mathbb{G}_m) \to \mathbb{C}$is a perfect pairing
$(\gamma,\omega) \to \int_{\gamma}\omega$
i.e.$H^1_{dR}(\mathbb{G}_m) = ^1(\mathbb{G}_m,Z)\otimes_{\mathbb{Z}}\mathbb{C}$
question. under this isomorphism,$\frac{dz}{z} = c\times \gamma_0^{\vee}$ what is c?
$c = \int_{\gamma_0}\frac{dz}{z} = 2\pi i$
Etale cohomology
exponential map :$\mathbb{C}\to \mathbb{C}^{*}$
$H^1(\mathbb{G}_m,\mathbb{Z}) = Hom(\pi_1(\mathbb{C}^{*}),\mathb{Z})$
Let l be a prime.
$H^1_{et}(\mathbb{G}_m,\mathbb{Q}_{l})$is a 1-dimensional$\mathbb{Q}_{l}$vector space on which$Gal(\bar{\mathbb{Q}}/\mathbb{Q})$acts.
We get a character called the cyclotomic character.
general picture
Let k be a field$(Q,F_q,C,\cdots)$
from (separable finit type k-schemes) to category of motives
Betti cohomology Vec over Q (Hodeg structure)
de Rham cohomology Vec over k if char k = 0 (graded vector space)
if$l\neq$char(k) etale cohomology vec over$\mathbb{Q}_l$(Galois representation)
crystalline cohomology Vec over$\mathbb{Q}_p$
(category of motives) can do linear algebra
$\mathbb{Q}$-linear\otimes$-category
bigger picture obtained when we compare cohomologies
Betti <-> de Rham , Hodge theory
crystalline(de Rham) <-> etale, p-adic Hodge theory
What we like in linear algebra :
1 dimension
2$f : V\to V$, characteristic polynomial
something we don't know :
$X over (k = \bar{k}), char(k)\neq 0$
for all l prime to characteristic,$dim_{\mathbb{Q}_l H^i_{et}(X,\mathbb{Q}_l)$
We don't know how to show that these numbers are independent of$l$.
we know that if$X$over$k$is smooth and proper,
$k=\bar{\mathbb{F}_q}$, then we know that these numbers are independent of l (Deligne-Weil II, trace formula for etale cohomology)
X smooth, alternating sum of dimension,\sum(-1)^i dim_{\mathbb{Q}_l H^i_{et}(X,\mathbb{Q}_l) is independent of l. (intersection theory of cycles)
ex : elliptic curve
E : y^2=x^3-Ax-B,\Delta\neq0 , A,B in\mathbb{Q}
over complex numbers, let\alpha,\betagenerators H_1
H^0(E,\Omega^1_E) =\mathbb{C}\cdot\frac{dx}{2y}
\omega_{\alpha}=\int_{\alpha}\frac{dx}{2y},\omega_{\beta}=\int_{\beta}\frac{dx}{2y}\in\mathbb{C}
These are linearly independent over real numbers so we get a lattice\Lambda=\mathbb{Z}\omega_{\alpha}+\mathbb{Z}\omega_{\beta}\subset\mathbb{C}
\intE(C)\to\mathbb{C}/\Lambdais an isomorphism
inverse map : Weierstrass\wp-function
abelian varieties form a\mathbb{Z}-linear category. So take a tensor with\mathbb{Q}
(abelian varieties)\otimes\mathbb{Q} = (category of ab. varieties up to isogeny) . these are\mathbb{Q}-linear
this is inside the category of motives.
http://en.wikipedia.org/wiki/Motive_(algebraic_geometry)
Feynman motive