Non-unitary c(2,k+2) minimal models
http://bomber0.myid.net/ (토론)님의 2010년 9월 23일 (목) 23:46 판
introduction
non-unitary \(c(2,k+2)\)'minimal models'
- central charge
\(c(2,k+2)=1-\frac{3k^2}{k+2}\)
\(k \geq 3\), odd - primary fields have conformal dimensions
\(h_j=-\frac{j(k-j)}{2(k+2)}\), \(j\in \{0,1,\cdots,[k/2]\}\) - effective central charge
\(c_{eff}=\frac{k-1}{k+2}\) - dilogarithm identity
\(\sum_{i=1}^{[k/2]}L(\frac{\sin^2\frac{\pi}{k+2}}{\sin^2\frac{(i+1)\pi}{k+2}}})=\frac{k-1}{k+2}\cdot \frac{\pi^2}{6}\) - character functions
\(\chi_j(\tau)=q^{h_j-c/24}\prod_{n\neq 0,\pm(j+1)}(1-q^n)^{-1}\) - quantum dimension and there recurrence relation
\(d_i=\frac{\sin \frac{(i+1)\pi}{k+2}}{\sin \frac{\pi}{k+2}}}\) satisfies
\(d_i^2=1+d_{i-1}d_{i+1}\) where \(d_0=1\), \(d_k=1\)
- (*choose k for c (2,k+2) minimal model*)k := 11
(*define Rogers dilogarithm*)
L[x_] := PolyLog[2, x] + 1/2 Log[x] Log[1 - x]
(*quantum dimension for minimal models*)
f[k_, i_] := (Sin[Pi/(k + 2)]/Sin[(i + 1) Pi/(k + 2)])^2
(*effective central charge*)
g[k_] := (k*Pi^2)/(2 (k + 2))
(*compare the results*)
N[Sum[L[f[k, i]], {i, 1, k - 1}] + Pi^2/6, 10]
N[g[k], 10]
d[k_, i_] := Sin[(i + 1) Pi/(k + 2)]/Sin[Pi/(k + 2)]
Table[{i, d[k, i]}, {i, 1, k}] // TableForm
Table[{i, N[(d[k, i])^2 - (1 + d[k, i - 1]*d[k, i + 1]), 10]}, {i, 1,
k}] // TableForm
history
encyclopedia
- http://en.wikipedia.org/wiki/
- http://www.scholarpedia.org/
- http://www.proofwiki.org/wiki/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
books
- 2010년 books and articles
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
expositions
articles
- http://www.ams.org/mathscinet
- http://www.zentralblatt-math.org/zmath/en/
- http://arxiv.org/
- http://www.pdf-search.org/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://dx.doi.org/
question and answers(Math Overflow)
blogs
- 구글 블로그 검색
- http://ncatlab.org/nlab/show/HomePage
experts on the field