Periods and transcendental number theory

수학노트
http://bomber0.myid.net/ (토론)님의 2009년 11월 13일 (금) 12:35 판
둘러보기로 가기 검색하러 가기
introduction

 

http://golem.ph.utexas.edu/category/2008/05/ambiguity_theory.html

 

This paper – Ambiguity theory, old and new – is rather fun and would be good to understand thoroughly if we hope to get 2-Galois to do anything important. It’s by Yves André of the ENS, and refers to a comment made by Galois that he was working with a théorie de l’ambiguïté. Good to see Albert Lautman receiving a mention.

For those who want something less introductory, on the same day André has deposited Galois theory, motives and transcendental numbers. Lots there about Kontsevich and Zagier’sPeriods, described in their article of that name in Mathematics Unlimited – 2001 and beyond, pages 771-808, unfortunately now no longer available on the Web.

 

 

regulator
  • regulator = R^n 을 격자로 자른 compact 공간의 부피로 정의

Abel-Jacobi map은

-Chern character map

-대수적 정수론의 Dirichlet regulator

-arithmetic geometry의 Beilinson regulator / Borel regulator

-motivic cohomology의 Hodge realization / de Rham realization

-chow group 의 cycle class map (singular homology의 fundamental class를 sub manifold 버전으로 보는 것)

-Poincare dual

등으로도 일반화

 

related items

 

 

books

 

 

encyclopedia

 

blogs

 

articles

 

TeX