Periods and transcendental number theory
http://bomber0.myid.net/ (토론)님의 2010년 3월 16일 (화) 10:52 판
introduction
http://golem.ph.utexas.edu/category/2008/05/ambiguity_theory.html
This paper – Ambiguity theory, old and new – is rather fun and would be good to understand thoroughly if we hope to get 2-Galois to do anything important. It’s by Yves André of the ENS, and refers to a comment made by Galois that he was working with a théorie de l’ambiguïté. Good to see Albert Lautman receiving a mention.
For those who want something less introductory, on the same day André has deposited Galois theory, motives and transcendental numbers.
Lots there about Kontsevich and Zagier’sPeriods, described in their article of that name in Mathematics Unlimited – 2001 and beyond, pages 771-808, unfortunately now no longer available on the Web.
regulator
- regulator = R^n 을 격자로 자른 compact 공간의 부피로 정의
- Abel-Jacobi map의 일반화
- Chern character map
- 대수적 정수론의 Dirichlet regulator
- arithmetic geometry의 Beilinson regulator / Borel regulator
- motivic cohomology의 Hodge realization / de Rham realization
- chow group 의 cycle class map (singular homology의 fundamental class를 sub manifold 버전으로 보는 것)
- Poincare dual