Talk on String functions and quantum affine algebras

수학노트
둘러보기로 가기 검색하러 가기

abstract

The character of an irreducible representation with dominant integral highest weight of an affine Lie algebra can be written as a linear combination of theta functions, with coefficients given by string functions which are modular forms. There are still many aspects of string functions that are not well-understood. In this talk I will review the basic properties of them, and explain certain connections with finite-dimensional representations of quantum affine algebras.

key message

  • string functions know about Kirillov-Reshetikhin modules

review of affine Lie algebras and their integrable representations

affine Lie algebras

  • Affine Kac-Moody algebra
  • Let $\overline{\mathfrak{g}}$ be a complex simple Lie algebra of rank $r$
  • $(a_{ij})_{i,j\in \overline{I}}$ Cartan matrix, $\overline{I}=\{1,\cdots, r\}$ index set
  • \((a_{ij})_{i,j\in I}\) : extended Cartan matrix $I=\{0\}\cup \overline{I}$
  • untwisted affine Kac-Moody algebra $\tilde{\mathfrak{g}}$ : Lie algebra with generators \(e_i,h_i,f_i , (i=0,1,2,\cdots, r)\) and relations
    • \(\left[h,h'\right]=0\)
    • \(\left[e_i,f_j\right]=\delta _{i,j}h_i\)
    • \(\left[h,e_j\right]=\alpha_{j}(h)e_j\)
    • \(\left[h,f_j\right]=-\alpha_{j}(h)f_j\)
    • \(\left(\text{ad} e_i\right){}^{1-a_{i,j}}\left(e_j\right)=0\) (\(i\neq j\))
    • \(\left(\text{ad} f_i\right){}^{1-a_{i,j}}\left(f_j\right)=0\) (\(i\neq j\))
  • basis of the Cartan subalgebra $\mathfrak{h}$; \(h_0,h_ 1,\cdots,h_r,d\)
  • dual basis for $\mathfrak{h}^{*}$; \(\Lambda_0,\Lambda_1,\cdots,\Lambda_r,\delta\)
  • we call \(\Lambda_0,\Lambda_1,\cdots,\Lambda_r\) the fundamental weights and \(\delta\) the imaginary root
  • simple roots \(\alpha_0,\alpha_1,\cdots,\alpha_r\)
  • distinguished elements
    • central element \(c=\sum_{i=0}^{r}a_i^{\vee}h _i\)
    • imaginary root \(\delta=\sum_{i=0}^{r}a_i\alpha_i\)
    • Weyl vector \(\rho=\sum_{i=0}^{r}\Lambda_i\)
  • normalize the bilinear form $(\cdot|\cdot)$ on $\mathfrak{h}^{*}$ so that $(\theta|\theta)=2$
  • let $Q=\sum_{i=1}^{r}\Z\, \alpha_i\subseteq \mathfrak{h}^{*}$ (root lattice of $\overline{\mathfrak{g}}$)
  • define $M\subseteq Q$ : $M=\{\sum_{i=1}^{r}\Z\, \alpha_i^{\vee}\}$ where $\alpha_i^{\vee}=t_i\alpha_i$ where $t_i=\frac{2}{(\alpha_i|\alpha_i)}$

affine Weyl group

  • Affine Weyl group
  • The affine Weyl group $W$ is generated by $s_0,s_1,\cdots, s_r\in \operatorname{Aut}\,\mathfrak{h}^{*}$ defined by

$$s_{i}\lambda = \lambda -\lambda(h_i)\alpha_i$$ for $i=0,1, \cdots, r$.

  • for $\gamma\in \mathfrak{h}^{*}$, define $t_{\gamma} : \mathfrak{h}^{*}\to \mathfrak{h}^{*}$ by

$$t_{\gamma}(\lambda)=\lambda+\lambda(c)\gamma-\left(\frac{1}{2}\lambda(c)|\gamma|^2+(\gamma|\lambda)\right)\delta $$

thm

Let $T=\{t_{\gamma}|\gamma\in M\}$. Then $W=\overline{W} \ltimes T$

integrable representations and characters

  • Unitary representations of affine Kac-Moody algebras
  • for each $\lambda\in \mathfrak{h}^{*}$, we get an irreducible $\tilde{\mathfrak{g}}$-module $L(\lambda)$ (which is a quotient of the Verma module)
  • character of an irreducible highest weight representation \(L(\lambda)\)

$$\operatorname{ch} L(\lambda):=\sum_{\beta\in \mathfrak{h}^{*}}\operatorname{mult}_{\lambda}(\beta) e^{\beta}$$

  • dominant integral weights $\lambda(\mathfrak{h}_i)\in \mathbb{Z}_{\geq 0},\, i=0,1,\cdots,r$
  • weight lattice

\[ P_{+}=\{\lambda\in \mathfrak{h}^{*}|\lambda=\sum_{i=0}^{l}\lambda_{i}\Lambda_i+\xi \delta, \lambda_i \in\mathbb{Z}_{\geq 0},\xi \in \mathbb{C}\} \]

  • A $\tilde{\mathfrak{g}}$-module $V$ is called integrable if $V=\oplus_{\lambda\in \mathfrak{h}^{*}}V_{\lambda}$ and if $e_i : V\to V$ and $f_i : V\to V$ are locally nilpotent for all $i=0,1,\cdots, r$
thm

If $\lambda\in P_{+}$, then $L(\lambda)$ is an integrable representation.

thm (Kac)

Let $\lambda\in P_{+}$. Then $$ \operatorname{ch} L(\lambda)=\frac{\sum_{w\in W} (-1)^{\ell(w)}w(e^{\lambda+\rho})}{\sum_{w\in W} (-1)^{\ell(w)}w(e^{\rho})} $$

  • see Weyl-Kac character formula
  • we call $k=\lambda(c)$ the level of $L(\lambda)$ and have \(k=\sum_{i=0}^{l}a_{i}^{\vee}\lambda_{i}\in \mathbb{Z}\)

Freudenthal multiplicity formula

thm

$$ (|\Lambda+\rho|^2-|\lambda+\rho|^2)m_{\lambda}=2\sum_{\alpha\in \Delta_{+}}\sum_{j\geq 1}(\operatorname{mult} \alpha)(\lambda+j\alpha|\alpha)m_{\lambda+j\alpha} $$

theta functions

$$ \Theta_{\lambda}= e^{-\frac{|\lambda|^2\delta}{2k}}\sum_{\gamma \in M}e^{t_{\gamma}(\lambda)}=e^{k\Lambda_0}\sum_{\gamma\in M+\overline{\lambda}/k}e^{-\frac{1}{2}k|\gamma|^2 \delta + k \gamma} $$

string functions

  • String functions and branching functions
  • $\Lambda\in P_{+}^{k}$
  • A weight $\mu$ of $L(\Lambda)$ is maximal if $\mu+\delta$ is not a weight
  • for each $\mu$, there exists a unique integer $n\geq 0$ such that $\mu+n\delta$ is maximal
  • define $m_{\Lambda}=\frac{(\Lambda+\rho)^2}{2(k+h^{\vee})}-\frac{\rho^2}{2h^{\vee}}$ and $m_{\Lambda,\lambda}=m_{\Lambda}-\frac{\lambda^2}{2k}$
  • note that $m_{\Lambda}=h_{\Lambda}-\frac{c_{\Lambda}}{24}+\xi$ where $h_{\Lambda}=\frac{(\bar{\Lambda}+2\bar{\rho}|\bar{\Lambda})}{2(k+h^{\vee})}$ and $c_{\Lambda}=\frac{k}{k+h^{\vee}}\dim \mathfrak{\overline{g}}$
  • the set $\max(\Lambda)$ of maximal weights is stable under $W$
def

For each $\lambda\in \mathfrak{h}^{*}$, the string function $c_{\lambda }^{\Lambda}$ is defined by $$ c_{\lambda }^{\Lambda}=e^{-m_{\Lambda,\lambda}\delta}\sum_{n=-\infty}^{\infty}\operatorname{mult}_{\Lambda}(\lambda-n\delta)e^{-n \delta} $$

  • an explicit expression for the string functions is not known in general
  • the few that are known were guessed using the modular transformations
  • modular form of weight $-r/2$

properties

  • $c_{\lambda }^{\Lambda}=c_{w\lambda }^{\Lambda}$ for $w\in W$
thm

We have $$ e^{-m_{\Lambda}\delta}\operatorname{ch} L(\Lambda)=\sum_{\lambda}c^{\Lambda}_{\lambda }\Theta_{\lambda} $$

proof

$$ \begin{aligned} \operatorname{ch} L(\Lambda)&=\sum_{\lambda\in \max{L(\Lambda)}}\sum_{n=0}^{\infty}\operatorname{mult}_{\Lambda}(\lambda-n\delta)e^{\lambda-n \delta}\\ &=\sum_{\lambda\in \max{L(\Lambda)} \mod kQ^{\vee}} \left(\sum_{\gamma\in M}e^{t_{\gamma}(\lambda)}\right)\sum_{n=0}^{\infty}\left(\operatorname{mult}_{\Lambda}(\lambda-n\delta)e^{-n\delta}\right)\\ &=\sum_{\lambda\in \max{L(\Lambda)} \mod kQ^{\vee}} e^{m_{\Lambda,\lambda}\delta}e^{-m_{\Lambda,\lambda}\delta}\left(\sum_{\gamma\in M}e^{t_{\gamma}(\lambda)}\right)\sum_{n=0}^{\infty}\left(\operatorname{mult}_{\Lambda}(\lambda-n\delta)e^{-n\delta}\right)\\ &=\sum_{\lambda\in \max{L(\Lambda)} \mod kQ^{\vee}} e^{(m_{\Lambda}-\frac{\lambda^2}{2k})\delta}e^{-m_{\Lambda,\lambda}\delta}\left(\sum_{\gamma\in M}e^{t_{\gamma}(\lambda)}\right)\sum_{n=0}^{\infty}\left(\operatorname{mult}_{\Lambda}(\lambda-n\delta)e^{-n\delta}\right)\\ &=\sum_{\lambda\in \max{L(\Lambda)} \mod kQ^{\vee}} e^{m_{\Lambda}\delta}c^{\Lambda}_{\lambda}\Theta_{\lambda} \end{aligned} $$ ■

modular transformations

thm

We have $$ c_{\lambda }^{\Lambda}(-\frac{1}{\tau})=(\frac{\tau}{i})^{-r/2}\sum_{(\Lambda',\lambda')}b(\Lambda,\lambda,\Lambda',\lambda')c_{\lambda'}^{\Lambda'}(\tau) $$ where $$ b(\Lambda,\lambda,\Lambda',\lambda')=(*)\exp(\frac{2\pi i(\lambda|\lambda')}{k}) \sum_{w\in \overline{W}} (-1)^{\ell(w)}\exp \left(-{\frac{2\pi i ( w(\Lambda+\rho)|\Lambda'+\rho)}{k+h^{\vee}}}\right) $$ and the sum is over all $\Lambda'\in P_{+}^k$ and $\lambda' \in P^k \mod kM+\mathbb{C}\delta$


asymptotic growth of coefficients

  • use the circle method
thm (Kac-Peterson)

Let $\Lambda\in P_{k}^{+},\, \lambda\in \max(\Lambda)$. As $n\to \infty$, $$ \operatorname{mult}_{\Lambda}(\lambda-n\delta)\sim (\text{const})\times n^{-(1/4)(r+3)}e^{4\pi (a n)^{1/2}} $$ where $a=$

Rogers-Ramanujan identities for string functions

$$ K^{m n}_{a b} = \Bigl(\hbox{min}(t_bm, t_an) - {m n\over \ell}\Bigr) (\alpha_a \vert \alpha_b) $$

conjecture [KNS93]

We have \begin{equation}\label{qkns} c^{\ell\Lambda_0}_\lambda(q)\cdot \eta(\tau)^r= \sum_{\{N^{(a)}_m\}}\frac{q^{\frac{1}{2}\sum_{(a,m), (b,n) \in H_\ell} K^{mn}_{ab}N^{(a)}_mN^{(b)}_n}} {\prod_{(a,m) \in H_\ell}(1-q)(1-q^2)\cdots (1-q^{N^{(a)}_m})} \end{equation} up to a rational power of $q$. The outer sum is over $N^{(a)}_m \in \Z_{\ge 0}$ such that $$\sum_{(a,m) \in H_\ell}mN^{(a)}_m\alpha_a \equiv \overline{\lambda} \mod \ell M.$$

example

  • let $\mathfrak{g}=A_1$
  • consider the vacuum representation of level $\ell$
thm [Lepowski-Primc 1985]

$$ c^{\ell\Lambda_0}_{\ell\Lambda_0}(\tau)\cdot \eta(\tau)=\sum_{(N_1,\dots,N_{\ell-1})\in \mathbb{Z}_{\geq 0}^{\ell-1}}\frac{q^{\sum_{n,m=1}^{\ell-1} N_n N_m (\min (n,m) -\frac{nm}{\ell})}} {\prod_{m=1}^{\ell-1}(1-q)\cdots(1-q^{N_m})} $$ where the sum is under the constraint $ \sum_{m=1}^{\ell-1} m N_m \equiv 0 \ \mathrm{mod}\ \ell$.

  • the associated matrix is $2\otimes \mathcal{C}(A_{\ell-1})^{-1}$

related items