겔폰드-슈나이더 정리

수학노트
Pythagoras0 (토론 | 기여)님의 2012년 11월 1일 (목) 13:25 판 (찾아 바꾸기 – “<h5 (.*)">” 문자열을 “==” 문자열로)
둘러보기로 가기 검색하러 가기

이 항목의 스프링노트 원문주소

 

 

겔폰드-슈나이더 정리

(정리) 겔폰드-슈나이더, 1934

\(\alpha \ne 0\),\(\alpha \ne 1\),\(\beta\notin \mathbb{Q}\) 인 복소수 \(\alpha\)와 \(\beta\) 가 대수적수이면, \(\alpha^{\beta} =e^{\beta \log \alpha\) 는 초월수이다.

 

 

겔폰드 상수

  • \(e^\pi\) 를 겔폰드 상수라 함
  • \(e^\pi=(e^{i\pi})^{-i}=(-1)^{i}\)
  • 겔폰드 슈나이더 정리를 적용하면, 초월수임이 증명.

 

 

겔폰드-슈나이더 상수

  • \(2^{\sqrt2}\)
  • 겔폰드 슈나이더 정리를 적용하면, 초월수임이 증명.

 

 

또다른 예

  • \(e^{\pi \sqrt{163}}=(e^{-i\pi})^{\sqrt{-163}}=(-1)^{\sqrt{-163}}\) 이므로 초월수이다 숫자 163

 

 

역사

 

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

 

관련논문

 

관련도서 및 추천도서

 

 

관련링크와 웹페이지

 

 

블로그