타원함수론 입문

수학노트
http://bomber0.myid.net/ (토론)님의 2010년 5월 28일 (금) 09:01 판
둘러보기로 가기 검색하러 가기

이 공부에는 유비(analogy)적인 생각이 매우 유용하다. 

무리함수적분 사인함수 원의 발견

\(\int_0^P{\frac{1}{\sqrt{1-z^2}}}dz\)

 

이 함수를 제대로 이해하려면, 적어도 세 가지를 이해해야 한다.

 

첫번째

\(\frac{1}{\sqrt{1-z^2}}\) 는 어떤 공간에 정의된 함수인가? 이것은 2 sheeted 리만 곡면에 정의된 함수이다.

 

두번째

\(\int_0^P{\frac{1}{\sqrt{1-z^2}}}dz\) 는 그럼 또 어떤 공간에 정의된 함수인가?

P 역시 2 sheeted 리만 곡면에서 정의되어 있다. 다만 이 값은 경로에 의존할 것이다. 

한가지 달라지는 것은 P는 무한대 점이 될 수 없다는 것이다. 

 

세번째

이 함수의 공역은 무엇인가?

 

 

 

\(\int_0^x{\frac{1}{\sqrt{1-x^2}}}dx+\int_0^y{\frac{1}{\sqrt{1-x^2}}}dx=\int_0^{x\sqrt{1-y^2}+y\sqrt{1-x^2}}{\frac{1}{\sqrt{1-x^2}}}dx\)

\(\arcsin x+\arcsin y=\arcsin(x\sqrt{1-y^2}+y\sqrt{1-x^2})\)

\(\sin\left(x+y\right)=\sin x\cos y +\cos x \sin y\)

 

이렇게 정의역과 공역을 명확하게 하려는 노력에서 일차적으로 리만곡면이 발견되었고, 아벨-자코비의 이론이 싹트게 된다. 

 

 

타원적분 타원함수 토러스의 발견

 

 

복소함수와 브랜치컷

하나의 브랜치가 고정되었다고 하자.  

\(w=f(z)\)

\((z,w)\) 는 리만곡면의 하나의 점을 나타내는 방식이다. 

 

 

 

 \(\int R(x,\sqrt{ax^2+bx+c})\,dx\) 형태의 적분이 주어져 있을때, 이러한 삼각치환들이 잘 되는 이유는 '이차곡선은 유리함수로 매개화 가능' 하기 때문이다. 

즉, \(y^2=ax^2+bx+c\) 라는 곡선을, 유리함수 \(f,g\)를 사용하여 \(x=f(t), y=g(t)\) 형태로 매개화할 수 있기 때문이다. 

매개화가 왜 되는지는, 나중에 다시 쓰도록 하자. 

 

그러면 루트 안에 들어가는 차수가 높아지는  \(\int \frac{dx}{\sqrt{1-x^4}}\) 와 같은 경우(lemniscate 곡선의 길이와 타원적분)는 어떨까? 

\(y^2=1-x^4\) 를 유리함수로 매개화할 수 있다면, 부정적분을 구할 수 있지 않을까?

하지만 애석하게도 그러한 유리함수로의 매개화는 존재하지 않는다!!!

이러한 적분이 바로 19세기의 수학계를 뜨겁게 달구었던 타원적분이다.