Quantum modular forms

수학노트
imported>Pythagoras0님의 2013년 4월 5일 (금) 02:36 판
둘러보기로 가기 검색하러 가기

example

  • unimodular generating function

$$ U(w;q)=\sum_{n=0}^{\infty}(wq;q)_{n}(w^{-1}q;q)_{n}q^{n+1} $$

$$R(w;q)=\sum_{n=0}^\infty \frac{q^{n^2}}{(wq;q)_n(w^{-1}q;q)_n}$$

$$C(w;q)=\frac{(q)_{\infty}}{(wq;q)_{\infty}(w^{-1}q;q)_{\infty}}$$

  • limit formula $\zeta_b=e^{2\pi i/b}$, $1\le a <b$, for every root of unity $\zeta$, there exists an integer $c$ such that

$$ \lim_{q\to \zeta} R(\zeta_{b}^{a};q)-\zeta_{b^2}^{c} C(\zeta_{b}^{a};q)=-(1-\zeta_{b}^{a})(1-\zeta_{b}^{-a})U(\zeta_{b}^{a};\zeta) $$

special case

  • If $b=2$ and $a=1$, then $\zeta_{b}^{a}=-1$
  • $U(-1;\zeta)$ becomes a finite sum if $\zeta$ is a root of unity

$$ U(-1;\zeta)=\sum_{n=0}^{k-1} (1+\zeta)^2(1+\zeta^2)^2\cdots (1+\zeta^n)^2\zeta^{n+1} $$

$$ \lim_{q\to \zeta} f(q)-(-1)^k b(q)=-4\sum_{n=0}^{k-1} (1+\zeta)^2(1+\zeta^2)^2\cdots (1+\zeta^n)^2\zeta^{n+1} $$



related items


computational resource


articles