팽르베 미분방정식(Painlevé Equations)

수학노트
Pythagoras0 (토론 | 기여)님의 2021년 2월 17일 (수) 05:05 판
(차이) ← 이전 판 | 최신판 (차이) | 다음 판 → (차이)
둘러보기로 가기 검색하러 가기

개요

  • Painlevé I-VI
  • II\[\frac{d^2y}{dt^2} = 2 y^3 + ty + \alpha \]


메모



사전 형태의 자료


관련링크 및 웹페이지


리뷰, 에세이, 강의노트

  • Guzzetti, Davide. “A Review on The Sixth Painleve’ Equation.” Constructive Approximation 41, no. 3 (June 2015): 495–527. doi:10.1007/s00365-014-9250-6.


관련논문

  • Takao Suzuki, A generalization of the \(q\)-Painlevé VI equation from a viewpoint of a particular solution in terms of the \(q\)-hypergeometric function, arXiv:1602.01573[math-ph], February 04 2016, http://arxiv.org/abs/1602.01573v4
  • Brezhnev, Yurii V. “The Sixth Painleve Transcendent and Uniformization of Algebraic Curves.” Journal of Differential Equations 260, no. 3 (February 2016): 2507–56. doi:10.1016/j.jde.2015.10.009.
  • Kajiwara, Kenji, Masatoshi Noumi, and Yasuhiko Yamada. “Geometric Aspects of Painlev’e Equations.” arXiv:1509.08186 [math-Ph, Physics:nlin], September 27, 2015. http://arxiv.org/abs/1509.08186.

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'painlevé'}, {'LEMMA': 'transcendent'}]
  • [{'LOWER': 'painlevé'}, {'LEMMA': 'equation'}]
  • [{'LOWER': 'painleve'}, {'LEMMA': 'transcendent'}]
  • [{'LOWER': 'painleve'}, {'LEMMA': 'equation'}]