팽르베 미분방정식(Painlevé Equations)
Pythagoras0 (토론 | 기여)님의 2021년 2월 17일 (수) 05:05 판
개요
- Painlevé I-VI
- II\[\frac{d^2y}{dt^2} = 2 y^3 + ty + \alpha \]
메모
- \(q''(s)=sq(s)+2q(s)^3\)
- 에어리 (Airy) 함수와 미분방정식
사전 형태의 자료
관련링크 및 웹페이지
리뷰, 에세이, 강의노트
- Guzzetti, Davide. “A Review on The Sixth Painleve’ Equation.” Constructive Approximation 41, no. 3 (June 2015): 495–527. doi:10.1007/s00365-014-9250-6.
관련논문
- Takao Suzuki, A generalization of the \(q\)-Painlevé VI equation from a viewpoint of a particular solution in terms of the \(q\)-hypergeometric function, arXiv:1602.01573[math-ph], February 04 2016, http://arxiv.org/abs/1602.01573v4
- Brezhnev, Yurii V. “The Sixth Painleve Transcendent and Uniformization of Algebraic Curves.” Journal of Differential Equations 260, no. 3 (February 2016): 2507–56. doi:10.1016/j.jde.2015.10.009.
- Kajiwara, Kenji, Masatoshi Noumi, and Yasuhiko Yamada. “Geometric Aspects of Painlev’e Equations.” arXiv:1509.08186 [math-Ph, Physics:nlin], September 27, 2015. http://arxiv.org/abs/1509.08186.
메타데이터
위키데이터
- ID : Q907724
Spacy 패턴 목록
- [{'LOWER': 'painlevé'}, {'LEMMA': 'transcendent'}]
- [{'LOWER': 'painlevé'}, {'LEMMA': 'equation'}]
- [{'LOWER': 'painleve'}, {'LEMMA': 'transcendent'}]
- [{'LOWER': 'painleve'}, {'LEMMA': 'equation'}]