리만 가설
http://bomber0.myid.net/ (토론)님의 2009년 9월 18일 (금) 17:56 판
간단한 소개
- 리만제타함수의 자명하지 않은 해는 그 실수부가 \(1/2\) 이라는 추측
- 리만제타함수의 함수방정식은 다음과 같음
\(\pi^{-s/2}\ \Gamma\left(\frac{s}{2}\right)\ \zeta(s)=\pi^{-(1-s)/2}\ \Gamma\left(\frac{1-s}{2}\right)\ \zeta(1-s)\)
재미있는 사실
역사
관련된 다른 주제들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/리만가설
- http://en.wikipedia.org/wiki/Riemann_hypothesis
- http://www.wolframalpha.com/input/?i=Riemann+zeta
- NIST Digital Library of Mathematical Functions
관련논문
- Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse
- [1]Bernhard Riemann, November 1859
- http://www.jstor.org/action/doBasicSearch?Query=
관련도서 및 추천도서
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)