베일리 쌍(Bailey pair)과 베일리 보조정리
http://bomber0.myid.net/ (토론)님의 2011년 11월 12일 (토) 05:24 판
이 항목의 수학노트 원문주소
개요
베일리 쌍(Bailey pair)
- 다음을 만족시키는 두 수열\(\{\alpha_r\}, \{\beta_r\}\)을 a에 대한 베일리 쌍이라 부른다
\(\beta_L=\sum_{r=0}^{L}\frac{\alpha_r}{(q)_{L-r}(aq)_{L+r}}\) - 켤레 베일리 쌍 \(\{\delta_r\}, \{\gamma_r\}\)
\(\gamma_L=\sum_{r=L}^{\infty}\frac{\delta_r}{(q)_{r-L}(aq)_{r+L}}=\sum_{r=0}^{\infty}\frac{\delta_{r+L}}{(q)_{r}(aq)_{r+2L}}\) - 베일리 쌍을 얻기 위해 합공식의 q-analogue 들의 특별한 경우들을 많이 이용함
왜 베일리 쌍을 공부하나?
- 베일리 쌍을 이용하여 q-series 항등식을 증명할 수 있음
- 베일리 보조정리를 이용하는 경우
- 베일리 쌍의 정의로부터
\(\beta_L=\sum_{r=0}^{L}\frac{\alpha_r}{(q)_{L-r}(aq)_{L+r}}\)
- 베일리 보조정리를 이용하는 경우
베일리 보조 정리
- 베일릴 보조 정리는 베일리 쌍과 켤레 베일리 쌍에 대한 항등식이다
- 네 수열\(\{\alpha_r\}, \{\beta_r\}\), \(\{\delta_r\}, \{\gamma_r\}\) 이
\(\beta_L=\sum_{r=0}^{L}{\alpha_r}{u_{L-r}v_{L+r}}\), \(\gamma_L=\sum_{r=L}^{\infty}{\delta_r}{u_{r-L}v_{r+L}}\)
이 조건을 만족시키면 다음이 성립한다
\(\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\sum_{n=0}^{\infty}\beta_n\delta_{n}\) - 다음과 같이 u,v 를 선택한다
\(u_{n}=\frac{1}{(q)_n}\) ,\(v_{n}=\frac{1}{(x)_n}\), 여기서 \(x=aq\)
- 다음과 같은 켤레 베일리 쌍 (relative to a)을 찾을 수 있다
\(\delta_n=\frac{(y)_n(z)_n x^n}{y^n z^n}\)
\(\gamma_n=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}\)
역사
메모
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
수학용어번역
- 단어사전
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 한국통계학회 통계학 용어 온라인 대조표
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Bailey_pair
- http://en.wikipedia.org/wiki/Wilfrid_Norman_Bailey
- NIST Digital Library of Mathematical Functions
리뷰논문, 에세이, 강의노트
- 50 Years of Bailey's lemma S. Ole Warnaar, 2009
관련논문