순환군
Pythagoras0 (토론 | 기여)님의 2012년 11월 2일 (금) 07:40 판 (찾아 바꾸기 – “==관련논문== * http://www.jstor.org/action/doBasicSearch?Query= * http://www.ams.org/mathscinet * http://dx.doi.org/” 문자열을 “” 문자열로)
이 항목의 수학노트 원문주소
개요
- 하나의 원소로 생성될 수 있는 군을 순환군(cyclic group)이라 함. 즉 모든 원소가 한 원소의 적당한 정수제곱으로 표현가능한 경우를 말함.
- \((\mathbb Z,+)\) 의 경우는 1로 모든 원소를 생성가능하므로, 순환군임.
- 2차원 평면의 정n각형에 대한 n개의 회전변환은 순환군임.
- \(z^n=1\) 를 만족시키는 n개의 복소수들은 곱셈에 대하여 순환군이 됨
- \(\zeta=e^{2\pi i \over n\) 으로 생성가능.
- \((\mathbb{Z}/n\mathbb{Z},+)\) 는 순환군임
- \((\mathbb{Z}/n\mathbb{Z})^\times\) 가 순환군이 되는 경우는 원시근(primitive root) 항목을 참조
순환군의 부분군
(정리) 순환군의 모든 부분군은 순환군이다.
(증명)
H 가 G의 부분군이라고 하자. a는 G의 생성원이라고 하자.
G의 원소는 \(\cdots, a^{-1},a^{-1},a^{0}, a^1,a^2,\cdots\)
따라서 각각의 원소에 이 지수를 정의할 수 있다. (\(\log_a g\) 로 생각할 수 있음)
항등원을 제외한 H의 원소중에서 이 지수의 값이 양수이며, 가장 작은 원소가 존재한다. 이 값을 \(d\) 로 두자.
H의 원소 \(a^k\) 에 대하여, \(k=dq+r, 0\leq r < d\) 를 사용하면, \(a^k=a^{dq}a^r=(a^d)^q a^r\) 형태로 쓸 수 있다.
H는 부분군이므로, \(a^r=(a^d)^{-q}a^k\) 는 H의 원소이다. \(d\)의 정의에 따라, \(r\) 은 0이어야 한다.
그러므로, 모든 H의 원소는 \(a^d\) 로 생성가능하다. ■
역사
메모
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
수학용어번역
- 단어사전
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 한국통계학회 통계학 용어 온라인 대조표
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
사전형태의 자료
- http://ko.wikipedia.org/wiki/순환군
- http://en.wikipedia.org/wiki/Cyclic_groups
- http://viswiki.com/en/Cyclic_groups
- The Online Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
리뷰논문, 에세이, 강의노트