슬레이터 1

수학노트
Pythagoras0 (토론 | 기여)님의 2012년 11월 1일 (목) 12:53 판 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
둘러보기로 가기 검색하러 가기
이 항목의 수학노트 원문주소==    

개요

 

 

항등식의 분류

 

 

 

켤레 베일리 쌍의 유도==
  • q-가우스 합 에서 얻어진 다음 결과를 이용
    \(\delta_n=\frac{(y)_n(z)_n x^n}{y^n z^n}\),  \(\gamma_n=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}\)
    \(\gamma_{n}=\sum_{r=0}^{\infty}\frac{\delta_{n+r}}{(x)_{r+2n}(q)_{r}}\)
  • Specialize
    \(x=q, y\to\infty, z\to\infty\).
  • Bailey pair
    \(\delta_n=q^{n^2}\)
    \(\gamma_n=\frac{1}{(q)_{\infty}}q^{n^2}\)
    \(\gamma_L=\sum_{r=L}^{\infty}\frac{\delta_r}{(q)_{r-L}(aq)_{r+L}}=\sum_{r=0}^{\infty}\frac{\delta_{r+L}}{(q)_{r}(aq)_{r+2L}}\)
   
베일리 쌍의 유도==
  •  
    Use the following [Slater51] (4.1)
    \(\sum_{r=0}^{n}\frac{(1-aq^{2r})(-1)^{r}q^{\frac{1}{2}(r^2+r)}(a)_{r}(c)_{r}(d)_{r}a^{r}}{(a)_{n+r+1}(q)_{n-r}(q)_{r}(aq/c)_{r}(aq/d)_{r}c^{r}d^{r}}=\frac{(aq/cd)_{n}}{(q)_{n}(aq/c)_{n}(aq/d)_{n}}\)
  • Specialize
    \(a=1,c=0,d=\infty\)
  • Bailey pair
    \(\alpha_{0}=1\), \(\alpha_{r}=(-1)^{r}(1+q^r)q^{\frac{1}{2}r(r-1)}\)
    \(\beta_{0}=1\), \(\beta_{r}=0\)
    \(\beta_n=\sum_{r=0}^{n}\frac{\alpha_r}{(x)_{n-r}(q)_{n+r}}=\sum_{r=0}^{n}\frac{(-1)^{r}(1+q^r)q^{\frac{1}{2}r(r-1)}}{(q)_{n-r}(q)_{n+r}}=0\)
   
베일리 쌍==
  • Bailey pairs
    \(\delta_n=q^{n^2}\)
    \(\gamma_n=\frac{1}{(q)_{\infty}}q^{n^2}\)
    \(\alpha_{0}=1\), \(\alpha_{r}=(-1)^{r}(1+q^r)q^{\frac{1}{2}r(r-1)}\)
    \(\beta_{0}=1\), \(\beta_{r}=0\)
   
q-series 항등식== \(\prod_{n=1}^{\infty}(1-q^n)=1+\sum_{n=1}^{\infty}(-1)^{n}(q^{\frac{3 n^2-n}{2}}+q^{\frac{3 n^2+n}{2}})=\sum_{n=-\infty}^\infty(-1)^nq^{n(3n-1)/2}\)
  • 베일리 쌍(Bailey pair)과 베일리 보조정리
    \(\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\sum_{n=0}^{\infty}\beta_n\delta_{n}\)
    \(\sum_{n=0}^{\infty}\beta_n\delta_{n}=1\)
    \(\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\frac{1}{(q)_{\infty}}(1+\sum_{n=1}^{\infty}(-1)^{n}(q^{\frac{3 n^2-n}{2}}+q^{\frac{3 n^2+n}{2}}))\)